Dynamin II regulates hormone secretion in neuroendocrine cells (original) (raw)
Journal of Biological Chemistry
Abstract
The dynamin family of GTP-binding proteins has been implicated as playing an important role in endocytosis. In Drosophila shibire, mutations of the single dynamin gene cause blockade of endocytosis and neurotransmitter release, manifest as temperature-sensitive neuromuscular paralysis. Mammals express three dynamin genes: the neural specific dynamin I, ubiquitous dynamin II, and predominantly testicular dynamin III. Mutations of dynamin I result in a blockade of synaptic vesicle recycling and receptor-mediated endocytosis. Here, we show that dynamin II plays a key role in controlling constitutive and regulated hormone secretion from mouse pituitary corticotrope (AtT20) cells. Dynamin II is preferentially localized to the Golgi apparatus where it interacts with G-protein betagamma subunit and regulates secretory vesicle release. The presence of dynamin II at the Golgi apparatus and its interaction with the betagamma subunit are mediated by the pleckstrin homology domain of the GTPase...
Zhonglin Chai hasn't uploaded this paper.
Let Zhonglin know you want this paper to be uploaded.
Ask for this paper to be uploaded.