367 Genomic profiles of single tumour cells in metastatic breast cancer patients (original) (raw)

Functional Antagonism of Junctional Adhesion Molecule-A (JAM-A), Overexpressed in Breast Ductal Carcinoma In Situ (DCIS), Reduces HER2-Positive Tumor Progression

Cancers

Breast ductal carcinoma in situ (DCIS) is clinically challenging, featuring high diagnosis rates and few targeted therapies. Expression/signaling from junctional adhesion molecule-A (JAM-A) has been linked to poor prognosis in invasive breast cancers, but its role in DCIS is unknown. Since progression from DCIS to invasive cancer has been linked with overexpression of the human epidermal growth factor receptor-2 (HER2), and JAM-A regulates HER2 expression, we evaluated JAM-A as a therapeutic target in DCIS. JAM-A expression was immunohistochemically assessed in patient DCIS tissues. A novel JAM-A antagonist (JBS2) was designed and tested alone/in combination with the HER2 kinase inhibitor lapatinib, using SUM-225 cells in vitro and in vivo as validated DCIS models. Murine tumors were proteomically analyzed. JAM-A expression was moderate/high in 96% of DCIS patient tissues, versus 23% of normal adjacent tissues. JBS2 bound to recombinant JAM-A, inhibiting cell viability in SUM-225 ce...

Cleavage of the extracellular domain of junctional adhesion molecule-A is associated with resistance to anti-HER2 therapies in breast cancer settings

Breast Cancer Research

Background: Junctional adhesion molecule-A (JAM-A) is an adhesion molecule whose overexpression on breast tumor tissue has been associated with aggressive cancer phenotypes, including human epidermal growth factor receptor-2 (HER2)-positive disease. Since JAM-A has been described to regulate HER2 expression in breast cancer cells, we hypothesized that JAM-dependent stabilization of HER2 could participate in resistance to HER2-targeted therapies. Methods: Using breast cancer cell line models resistant to anti-HER2 drugs, we investigated JAM-A expression and the effect of JAM-A silencing on biochemical/functional parameters. We also tested whether altered JAM-A expression/ processing underpinned differences between drug-sensitive and-resistant cells and acted as a biomarker of patients who developed resistance to HER2-targeted therapies. Results: Silencing JAM-A enhanced the anti-proliferative effects of anti-HER2 treatments in trastuzumab-and lapatinibresistant breast cancer cells and further reduced HER2 protein expression and Akt phosphorylation in drug-treated cells. Increased epidermal growth factor receptor expression observed in drug-resistant models was normalized upon JAM-A silencing. JAM-A was highly expressed in all of a small cohort of HER2-positive patients whose disease recurred following anti-HER2 therapy. High JAM-A expression also correlated with metastatic disease at the time of diagnosis in another patient cohort resistant to trastuzumab therapy. Importantly, cleavage of JAM-A was increased in drug-resistant cell lines in conjunction with increased expression of ADAM-10 and-17 metalloproteases. Pharmacological inhibition or genetic silencing studies suggested a particular role for ADAM-10 in reducing JAM-A cleavage and partially resensitizing drug-resistant cells to the anti-proliferative effects of HER2-targeted drugs. Functionally, recombinant cleaved JAM-A enhanced breast cancer cell invasion in vitro and both invasion and proliferation in a semi-in vivo model. Finally, cleaved JAM-A was detectable in the serum of a small cohort of HER2-positive patients and correlated significantly with resistance to HER2-targeted therapy. Conclusions: Collectively, our data suggest a novel model whereby increased expression and cleavage of JAM-A drive tumorigenic behavior and act as a biomarker and potential therapeutic target for resistance to HER2-targeted therapies.

Attenuation of Junctional Adhesion Molecule-A Is a Contributing Factor for Breast Cancer Cell Invasion

Cancer Research, 2008

The metastatic potential of cancer cells is directly attributed to their ability to invade through the extracellular matrix. The mechanisms regulating this cellular invasiveness are poorly understood. Here, we show that junctional adhesion molecule A (JAM-A), a tight junction protein, is a key negative regulator of cell migration and invasion. JAM-A is robustly expressed in normal human mammary epithelium, and its expression is down-regulated in metastatic breast cancer tumors. In breast cancer cell lines, an inverse relationship between JAM-A expression and the ability of these cells to migrate on a collagen matrix was observed, which correlates with the known ability of these cells to metastasize. The T47D and MCF-7 cells, which migrate least, are found to express high levels of JAM-A, whereas the more migratory MDA-MB-468 cells have lower levels of JAM-A on the cell surface. MDA-MB-231 cells, which are highly migratory, express the least amount of JAM-A. Overexpression of JAM-A in MDA-MB-231 cells inhibited both migration and invasion through collagen gels. Furthermore, knockdown of JAM-A using short interfering RNAs enhanced the invasiveness of MDA-MB-231 cells as well as T47D cells. The ability of JAM-A to attenuate cell invasion correlated with the formation of increased numbers of focal adhesions and the formation of functional tight junctions. These results show for the first time that an immunoglobulin superfamily cell adhesion protein expressed at tight junctions could serve as a key negative regulator of breast cancer cell invasion and possibly metastasis. Furthermore, loss of JAM-A could be used as a biomarker for aggressive breast cancer.

Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression

PLoS ONE, 2011

Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A2/2 tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target.

Triple negative breast cancer metastasis is hindered by a peptide antagonist of F11R/JAM‑A protein

Cancer Cell International, 2023

Background The F11R/JAM-A cell adhesion protein was examined as the therapeutic target in triple negative breast cancer (TNBC) with the use of the peptide antagonist to F11R/JAM-A, that previously inhibited the early stages of breast cancer metastasis in vitro. Methods The online in silico analysis was performed by TNMPlot, UALCAN, and KM plotter. The in vitro experiments were performed to verify the effect of peptide 4D (P4D) on human endothelial cell lines EA.hy926 and HMEC-1 as well as on human TNBC cell line MDA-MB-231. The cell morphology upon P4D treatment was verified by light microscopy, while the cell functions were assessed by colony forming assay, MTT cell viability assay, BrdU cell proliferation assay, and Transepithelial/Endothelial Electrical Resistance measurements. The in vivo experiments on 4T1 murine breast cancer model were followed by histopathological analysis and a series of quantitative analyses of murine tissues. Results By in silico analysis we have found the elevated gene expression in breast cancer with particular emphasis on TNBC. The elevated F11R expression in TNBC was related with poorer survival prognosis. Peptide 4D has altered the morphology and increased the permeability of endothelial monolayers. The colony formation, viability, and proliferation of MDA-MB-231 cells were decreased. P4D inhibited the metastasis in 4T1 breast cancer murine model in a statistically significant manner that was demonstrated by the resampling bootstrap technique. Conclusions The P4D peptide antagonist to F11R/JAM-A is able to hinder the metastasis in TNBC. This assumption needs to be confirmed by additional 4T1 mouse model study performed on larger group size, before making the decision on human clinical trials.

Functional inhibition of F11 receptor (F11R/junctional adhesion molecule-A/JAM-A) activity by a F11R-derived peptide in breast cancer and its microenvironment

Breast Cancer Research and Treatment

PurposeTo examine the involvement of the F11R/JAM-A protein in breast cancer metastasis, we utilized the F11R/JAM-A antagonistic peptide 4D (P4D) in experiments of transendothelial migration (TEM) of breast cancer cells.MethodsExperiments were conducted in the mouse 4T1 breast cancer model utilizing the human mammary epithelial cell and endothelial cell lines. The levels of soluble F11R/JAM-A (sJAM-A) in the murine plasmas were measured by ELISA. Levels of F11R/JAM-A mRNA and protein in cell lines were assessed by qRT-PCR and Western blot, respectively. Cell surface expression of F11R/JAM-A was demonstrated by flow cytometry. Functional tests included the TEM of breast cancer cells and adhesion of breast cancer cells to the endothelium. The endothelial permeability was studied by fluorescent tracer assay and by the Real-Time Cell Analysis (RTCA).ResultsThe tumor inducers Tβ4 and TGF-β1 reduced the levels of sJAM-A in murine plasma, and reduced the F11R/JAM-A protein levels in the hu...

A Transcriptional Link between HER2, JAM-A and FOXA1 in Breast Cancer

Cells, 2022

Overexpression of the human epidermal growth factor receptor-2 (HER2) is associated with aggressive disease in breast and certain other cancers. At a cellular level, the adhesion protein Junctional Adhesion Molecule-A (JAM-A) has been reported to regulate the expression of HER3 via a transcriptional pathway involving FOXA1. Since FOXA1 is also a suggested transcription factor for HER2, this study set out to determine if JAM-A regulates HER2 expression via a similar mechanism. An integrated tripartite approach was taken, involving cellular expression studies after targeted disruption of individual players in the putative pathway, in silico identification of relevant HER2 promoter regions and, finally, interrogation of cancer patient survival databases to deconstruct functionally important links between HER2, JAM-A and FOXA1 gene expression. The outcome of these investigations revealed a unidirectional pathway in which JAM-A expression transcriptionally regulates that of HER2 by influ...