Synergies Between Space Research and Space Operations-Examples from the International Space Station (original) (raw)

Research on the International Space Station: An Overview

47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009

The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations-November 1998 to November 2000-it hosted a few early science experiments months before the first international crew took up residence. Since that time-and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident-science returns from the ISS have been growing at a steady pace. As of this writing, over 162 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and international partners. This report summarizes the experimental results collected to date. Today, NASA's priorities for research aboard the ISS center on understanding human health during longduration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future exploration crews and spacecraft. Through the U.S. National Laboratory designation, the ISS is also a platform available to other government agencies. Research on ISS supports new understandings, methods or applications relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys.

International Space Station Science Research Accomplishments During the Assembly Years: An Analysis of Results from 2000-2008

2012

Research Area Spacecraft Materials and Systems The In-SPACE Soldering Experiment (ISSI) is another payload that was rapidly developed after the Columbia accident to provide a lowmass experiment using hardware already on board station. It was designed to promote understanding of joining techniques, shape equilibrium, wetting phenomena, and micro-structural development in space. Its primary objective was to better understand the effects and consequences of soldering in a microgravity environment such as that found on ISS. In Earth's gravity, soldering has a defined behavior and is reliant on gravity and convection to assist in solidification, joint shape, integrity, and microstructure. Unfortunately, on Earth detrimental gas bubbles (void spaces) are still found in the solder joint and at contact surfaces. These voids reduce the thermal and electrical conductivity and provide sites for crack initiation. Bubbles have less chance to escape in the reduced-gravity environment of space and, therefore, are likely to be more of a problem. To better understand this potential problem, a systematic series of soldering samples was designed to investigate and understand porosity development, surface wetting, and equilibrium shape formation. After the samples were heated on orbit, they were returned to Earth for property testing and metallographic examination. 1 1 3 B RESULTS Five soldering sessions resulted in 86 samples. Experiment samples were returned to the investigator team in late 2005, and were evaluated both nondestructively and then destructively.

NASA utilization of the International Space Station and the Vision for Space Exploration

Acta Astronautica, 2007

In response to the U.S. President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA's Exploration Vision.

International space station accomplishments update: Scientific discovery, advancing future exploration, and benefits brought home to earth

Acta Astronautica, 2014

Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of "ocular syndrome" affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new "cold flame" phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe.

Integration of multiple research disciplines on the international space station

Acta Astronautica, 2000

The International Space Station will provide an extremely high-quality, long-duration microgravity environment for the conduct of research. In addition, the ISS offers a platform for performing observations of Earth and Space from a high-inclination orbit, outside of the Earth's atmosphere. This unique environment and observational capability offers the opportunity for advancement in a diverse set of research fields. Many of these disciplines to not relate to one another, and present widely differing approaches to study, as well as different resource and operational requirements.

The international space station: A pathway to the future

Acta Astronautica, 2005

Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 6 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States’ commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the long-term effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.

International utilization at the threshold of "assembly complete"science returns from the International Space Station

Acta Astronautica, 2010

The European Columbus and Japanese Kibo laboratories are now fully operational on the International Space Station (ISS), bringing decades of international planning to fruition. NASA is now completing launch and activation of major research facilities that will be housed in the Destiny U.S. Laboratory, Columbus, and Kibo. These facilities include major physical sciences capabilities for combustion, fluid physics, and materials science, as well as additional multipurpose and supporting infrastructure. Expansion of the laboratory space and expansion to a 6-person crew (May 2009), is already leading to significant increases in research throughput even before the assembly is completed. International research on the ISS includes exchanges of results, sharing of facilities, collaboration on experiments, and joint publication and communication of accomplishments. Significant and ongoing increases in research activity on ISS have occurred over the past year. Although research results lag behind on-orbit operations by 2-5 years, the surge of early research activities following Space Shuttle return to flight in 2005 is now producing an accompanying surge in scientific publications. Evidence of scientific productivity from early utilization opportunities combined with the current pace of research activity in orbit are both important parts of the evidence base for evaluating the potential future achievements of a complete and active ISS.

International Space Station Research-Accomplishments and Pathways for Exploration and Fundamental Research

46th AIAA Aerospace Sciences Meeting and Exhibit, 2008

Beginning with the launch of the European Columbus module planned for early 2008, we approach a transition in the assembly of the International Space Station (ISS) that is of great importance for the sciences. During the following 18 months, we will operate the first experiments in Columbus physical science research facilities and also launch and commission the Japanese Kibo module. In addition, two Multi-purpose Logistics Module (MPLM) flights will deliver the U.S. Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR) along with their first science experiments. These facilities provide significant new capabilities for basic and applied physical science research in microgravity. New life support technologies will come online throughout 2008, and we will reach the milestone of a 6-person crew planned for May 2009. A larger crew enables significantly more scientific use of all the facilities for the life of ISS. Planning for the use of the ISS as a National Laboratory is also maturing as we near the completion of assembly, enabling access to ISS as a research platform for other government agencies and the private sector. The latest updates on National Laboratory implementation will also be provided in this presentation. At the same time as these significant increases in scientific capability, there have been significant ongoing accomplishments in NASA's early ISS research-both explorationrelated and fundamental research. These accomplishments will be reviewed in context as harbingers of the capabilities of the ISS when assembly is complete. The Vision for Space Exploration serves to focus NASA's applied investigations in the physical sciences. However, the broader capability of the space station as a National Laboratory and as a nexus for international collaboration will also influence the study of gravity-dependent processes by researchers around the world.