Molecular aspects of Listeria monocytogenes infection (original) (raw)

Detection of a gene encoding a phosphatidylinositol-specific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes

Molecular Microbiology, 1991

A phosphatidylinositol-specific phospholipase C (PI-PLC) that is unique to the pathogenic Listeria species L monocytogenes and L. ivanovii has been detected. Deletion analysis performed with Escher' ichia coli recombinants expressing P(-PLC activity together with maxicell analysis showed that a 34 kDa polypeptide was responsible for this activity. Nucleotide sequencing revealed that the gene encoding thi$ potypeptide comprises 317 amino acid residues with a 22-amino-acid signal peptide. This gene, designated pfcfor phosphatidylinositol-specific phospholipase C, is located back to back with the listeriolysin gene on the chromosome of L. monocytogenes where these genes are transcribed by divergent non-overlapping promoters. Expression of the pic gene is dependent on the product of the prfA gene, which also regulates expression of the listeriolysin gene in L. monocytogenes.

Requirement of the Listeria monocytogenes Broad-Range Phospholipase PC-PLC during Infection of Human Epithelial Cells

Journal of Bacteriology, 2003

In this study, we investigated the requirement of the Listeria monocytogenes broad-range phospholipase C (PC-PLC) during infection of human epithelial cells. L. monocytogenes is a facultative intracellular bacterial pathogen of humans and a variety of animal species. After entering a host cell, L. monocytogenes is initially surrounded by a membrane-bound vacuole. Bacteria promote their escape from this vacuole, grow within the host cell cytosol, and spread from cell to cell via actin-based motility. Most infection studies with L. monocytogenes have been performed with mouse cells or an in vivo mouse model of infection. In all mouse-derived cells tested, the pore-forming cytolysin listeriolysin O (LLO) is absolutely required for lysis of primary vacuoles formed during host cell entry. However, L. monocytogenes can escape from primary vacuoles in the absence of LLO during infection of human epithelial cell lines Henle 407, HEp-2, and HeLa. Previous studies have shown that the broad-ra...

Role of Listeria monocytogenes exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C in activation of human neutrophils

Infection and immunity, 1999

Polymorphonuclear leukocytes (PMN) are essential for resolution of infections with Listeria monocytogenes. The present study investigated the role of the listerial exotoxins listeriolysin (LLO) and phosphatidylinositol-specific phospholipase C (PlcA) in human neutrophil activation. Different Listeria strains, mutated in individual virulence genes, as well as purified LLO were used. Coincubation of human neutrophils with wild-type L. monocytogenes provoked PMN activation, occurring independently of phagocytosis events, with concomitant elastase secretion, leukotriene generation, platelet-activating factor (PAF) synthesis, respiratory burst, and enhanced phosphoinositide hydrolysis. Degranulation and leukotriene formation were noted to be solely dependent on LLO expression, as these features were absent when the LLO-defective mutant EGD- and the avirulent strain L. innocua were used. These effects were fully reproduced by a recombinant L. innocua strain expressing LLO (INN+) and by th...

Modification of the signal sequence cleavage site of listeriolysin O does not affect protein secretion but impairs the virulence of Listeria monocytogenes

Microbiology, 2003

Listeriolysin O (LLO, hly-encoded), a major virulence factor secreted by the bacterial pathogen Listeria monocytogenes, is synthesized as a precursor of 529 residues. To impair LLO secretion, the four residues of the predicted signal sequence cleavage site (EA-KD) were deleted and the mutant LLO protein was expressed in a hly-negative derivative of L. monocytogenes. Unexpectedly, the mutant protein was secreted in normal amounts in the culture supernatant and was fully haemolytic. N-terminal sequencing of the secreted LLO molecule revealed that N-terminal processing of the preprotein occurred three residues downstream of the natural cleavage site. L. monocytogenes expressing this truncated LLO showed a reduced capacity to disrupt the phagosomal membranes of bone marrow macrophages and of hepatocytes; and the mutant strain showed a 100-fold decrease in virulence in the mouse model. These results suggest that the first N-terminal residues of mature LLO participate directly in phagosom...

Listeria monocytogenes phospholipase C-dependent calcium signaling modulates bacterial entry into J774 macrophage-like cells

Infection and immunity, 1999

Listeria monocytogenes secretes several proteins that have been shown to contribute to virulence. Among these is listeriolysin O (LLO), a pore-forming hemolysin that is absolutely required for virulence. Two other virulence factors are phospholipases: a phosphatidylinositol-specific phospholipase C (PI-PLC [plcA]) and a broad-range PLC (plcB). Although mutations in plcA or plcB resulted in small increases in mouse 50% lethal dose (LD50), deletions in both genes resulted in a 500-fold increase in LD50. We have examined the role of these secreted proteins in host intracellular signaling in the J774 macrophage-like cell line. Measurements of cytosolic free calcium ([Ca2+]i) have revealed a rapid spike upon exposure of these cells to wild-type L. monocytogenes. This is followed by a second peak at 5 min and a third prolonged peak with a maximal [Ca2+]i of 800 to 1,000 nM. The pattern of calcium changes was greatly altered by deletion of any of the three virulence factors. An LLO mutant ...

Listeria monocytogenes virulence factors, including Listeriolysin O, are secreted in biologically active Extracellular Vesicles

Journal of Biological Chemistry, 2018

Outer membrane vesicles produced by Gram-negative bacteria have been studied for half a century but the possibility that Gram-positive bacteria secrete extracellular vesicles (EVs) was not pursued until recently due to the assumption that the thick peptidoglycan cell wall would prevent their release to the environment. However, following their discovery in fungi, which also have cell walls, EVs have now been described for a variety of Gram-positive bacteria. EVs purified from Gram-positive bacteria are implicated in virulence, toxin release, and transference to host cells, eliciting immune responses, and spread of antibiotic resistance. Listeria monocytogenes is a Gram-positive bacterium that causes listeriosis. Here we report that L. monocytogenes produces EVs with diameters ranging from 20 to 200 nm, containing the pore-forming toxin listeriolysin O (LLO) and phosphatidylinositol-specific phospholipase C (PI-PLC). Cell-free EV preparations were toxic to mammalian cells, the murine macrophage cell line J774.16, in a LLO-dependent manner, evidencing EV biological activity. The deletion of plcA increased EV toxicity, suggesting PI-PLC reduced LLO activity. Using simultaneous metabolite, protein, and lipid extraction (MPLEx) multiomics we characterized protein, lipid, and metabolite composition of bacterial cells and secreted EVs and found that EVs carry the majority of listerial virulence proteins. Using immunogold EM we detected LLO at several organelles within infected human epithelial cells and with high-resolution fluorescence imaging we show that dynamic lipid structures are released from L. monocytogenes during infection. Our findings demonstrate that L. monocytogenes uses EVs for toxin release and implicate these structures in mammalian cytotoxicity. The pathogenic Gram-positive bacterium Listeria monocytogenes is the etiological agent of listeriosis, a disease with serious consequences for pregnant women, newborns, and immunocompromised persons. Healthy individuals who have ingested large amounts of L. monocytogenes can suffer from gastroenteritis when the bacterium passes through the gastrointestinal barrier (1-4). L. monocytogenes can cause spontaneous abortions in pregnant women and meningoencephalitis by crossing the placental and blood-brain barriers, respectively (5). To invade cells, cross these barriers, and evade the immune system, L. monocytogenes has a sophisticated intracellular life cycle and pathogenic strategy (6, 7). Initially, L. monocytogenes invades various cell types, including nonphagocytic cells, by utilizing two internalins, internalin A (InlA) and internalin B (InlB), with a minor contribution by the pore-forming toxin listeriolysin O (LLO), 7 to induce uptake of the bacterium (1, 5, 8-11). Once internalized in the host vacuole, L. monocytogenes employs LLO, phosphatidylcholinespecific phospholipase (PC-PLC), and phosphatidylinositolspecific phospholipase C (PI-PLC) to disrupt the single vacuolar membrane, releasing the bacterium into the cytoplasm The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This article contains Movie S1, Tables S1-S4, and Figs. S1-S4. Multiomics data were deposited in the MassIVE repository under accession numbers MSV000081402, MSV000081403, and MSV000081404.

Surface proteins and the pathogenic potential of Listeria monocytogenes

Trends in Microbiology, 2002

Listeria monocytogenes is a ubiquitous Grampositive, rod-shaped, non-capsulated, nonsporulating, facultative intracellular bacterium that causes severe food-borne infections in humans and animals. Human listeriosis is characterized by a high mortality rate (>20%), and immunosuppressed individuals, pregnant women, foetuses and neonates are most susceptible to Listeria infections. Listeria disseminates from the intestine to the blood, the inner organs and eventually to the brain and foetoplacental unit after crossing the intestinal, the blood-brain and the foeto-placental barriers. In the infected host, Listeria is mostly intracellular owing to its capacity to survive within phagocytes and induce its phagocytosis by non-phagocytic cells.

Activation of Host Phospholipases C and D in Macrophages after Infection with Listeria monocytogenes

Infection and Immunity, 2000

Infection of the J774 murine macrophage-derived cell line with Listeria monocytogenes results in several elevations of intracellular calcium during the first 15 min of infection. These appear to result from the actions of secreted bacterial proteins, including phosphatidylinositol-specific phospholipase C (PI-PLC), a broadrange phospholipase C, and listeriolysin O (LLO) (S. J. Wadsworth and H. Goldfine, Infect. Immun. 67:1770-1778, 1999). We have measured hydrolysis of host PI and the activation of host polyphosphoinositide-specific PLC and host phospholipase D (PLD) during infection with wild-type and mutant L. monocytogenes. Elevated hydrolysis of host PI occurred within the first 10 min of infection and was dependent on both bacterial PI-PLC and LLO, both of which were required for the earliest elevations of intracellular calcium in the host cell. A more rapid hydrolysis of host PI was observed at 30 min after infection, at the time when wild-type bacteria have been internalized. Activation of host PLC, also occurred in the first 10 min of infection but was not dependent on the presence of bacterial PI-PLC. Similar observations were made in murine bone marrowderived macrophages. In J774 cells, activation of host PLD was observed after 20 min of infection and was dependent on bacterial LLO. Mutants in the bacterial phospholipases produced levels of PLD activation similar to those produced by the wild type. Phorbol myristate acetate (PMA) also activated host PLD, while long-term treatment with PMA resulted in loss of the ability of L. monocytogenes to activate host PLD, suggesting an involvement of protein kinase C (PKC) in the activation of PLD. Rottlerin, an inhibitor of PKC ␦ in J774 cells, also inhibited the activation of PLD, but hispidin, an inhibitor of PKC ␤I and ␤II, did not. Pretreatment of J774 cells with the PLD inhibitor, 2,3-diphosphoglycerate partially inhibited escape of the bacteria from the primary phagocytic vacuole.