Linear stability analysis of magnetized relativistic jets: the non-rotating case (original) (raw)

Abstract

We perform a linear analysis of the stability of a magnetized relativistic nonrotating cylindrical flow in the aproximation of zero thermal pressure, considering only the |m| = 1 mode. We find that there are two modes of instability: Kelvin-Helmholtz and current driven. The Kelvin-Helmholtz mode is found at low magnetizations and its growth rate depends very weakly on the pitch parameter. The current driven modes are found at high magnetizations and the value of the growth rate and the wavenumber of the maximum increase as we decrease the pitch parameter. In the relativistic regime the current driven mode is splitted in two branches, the branch at high wavenumbers is characterized by the eigenfunction concentrated in the jet core, the branch at low wavenumbers is instead characterized by the eigenfunction that extends outside the jet velocity shear region.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (30)

  1. Appl S., 1996, A&A, 314, 995
  2. Appl S., Camenzind M., 1992, A&A, 256, 354
  3. Appl S., Lery T., Baty H., 2000, A&A, 355, 818
  4. Baty H., Keppens R., 2002, ApJ, 580, 800
  5. Begelman M. C., 1998, ApJ, 493, 291
  6. Birkinshaw M., 1991, The stability of jets. pp 278-+ Bodo G., Rosner R., Ferrari A., Knobloch E., 1989, ApJ, 341, 631
  7. Bodo G., Rosner R., Ferrari A., Knobloch E., 1996, ApJ, 470, 797
  8. Bonanno A., Urpin V., 2008, A&A, 488, 1
  9. Bonanno A., Urpin V., 2011, Phys. Rev. E, 84, 056310
  10. Celotti A., Ghisellini G., 2008, MNRAS, 385, 283
  11. Ferrari A., Trussoni E., Zaninetti L., 1978, A&A, 64, 43
  12. Hardee P. E., 1979, ApJ, 234, 47
  13. Hardee P. E., 2006, in P. A. Hughes & J. N. Bregman ed., Relativistic Jets: The Common Physics of AGN, Microquasars, and Gamma-Ray Bursts Vol. 856 of American Institute of Physics Conference Series, AGN Jets: A Review of Stability and Structure. pp 57-77
  14. Hardee P. E., Cooper M. A., Norman M. L., Stone J. M., 1992, ApJ, 399, 478
  15. Istomin Y. N., Pariev V. I., 1994, MNRAS, 267, 629
  16. Istomin Y. N., Pariev V. I., 1996, MNRAS, 281, 1
  17. Komissarov S. S., Barkov M. V., Vlahakis N., Königl A., 2007, MNRAS, 380, 51
  18. Lyubarskii Y. E., 1999, MNRAS, 308, 1006
  19. McKinney J. C., Blandford R. D., 2009, MNRAS, 394, L126
  20. Mignone A., Rossi P., Bodo G., Ferrari A., Massaglia S., 2010, MNRAS, 402, 7
  21. Mizuno Y., Hardee P., Nishikawa K.-I., 2007, ApJ, 662, 835
  22. Moll R., Spruit H. C., Obergaulinger M., 2008, A&A, 492, 621
  23. Nakamura M., Meier D. L., 2004, ApJ, 617, 123
  24. Narayan R., Li J., Tchekhovskoy A., 2009, ApJ, 697, 1681
  25. Osmanov Z., Mignone A., Massaglia S., Bodo G., Ferrari A., 2008, A&A, 490, 493
  26. Perucho M., Hanasz M., Martí J. M., Sol H., 2004, A&A, 427, 415
  27. Perucho M., Martí J. M., Cela J. M., Hanasz M., de La Cruz R., Rubio F., 2010, A&A, 519, A41+
  28. Sikora M., Begelman M. C., Madejski G. M., Lasota J.-P., 2005, ApJ, 625, 72
  29. Tomimatsu A., Matsuoka T., Takahashi M., 2001, Phys. Rev. D, 64, 123003
  30. Urpin V., 2002, A&A, 385, 14