Linear stability analysis of magnetized relativistic jets: the non-rotating case (original) (raw)
Abstract
We perform a linear analysis of the stability of a magnetized relativistic nonrotating cylindrical flow in the aproximation of zero thermal pressure, considering only the |m| = 1 mode. We find that there are two modes of instability: Kelvin-Helmholtz and current driven. The Kelvin-Helmholtz mode is found at low magnetizations and its growth rate depends very weakly on the pitch parameter. The current driven modes are found at high magnetizations and the value of the growth rate and the wavenumber of the maximum increase as we decrease the pitch parameter. In the relativistic regime the current driven mode is splitted in two branches, the branch at high wavenumbers is characterized by the eigenfunction concentrated in the jet core, the branch at low wavenumbers is instead characterized by the eigenfunction that extends outside the jet velocity shear region.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (30)
- Appl S., 1996, A&A, 314, 995
- Appl S., Camenzind M., 1992, A&A, 256, 354
- Appl S., Lery T., Baty H., 2000, A&A, 355, 818
- Baty H., Keppens R., 2002, ApJ, 580, 800
- Begelman M. C., 1998, ApJ, 493, 291
- Birkinshaw M., 1991, The stability of jets. pp 278-+ Bodo G., Rosner R., Ferrari A., Knobloch E., 1989, ApJ, 341, 631
- Bodo G., Rosner R., Ferrari A., Knobloch E., 1996, ApJ, 470, 797
- Bonanno A., Urpin V., 2008, A&A, 488, 1
- Bonanno A., Urpin V., 2011, Phys. Rev. E, 84, 056310
- Celotti A., Ghisellini G., 2008, MNRAS, 385, 283
- Ferrari A., Trussoni E., Zaninetti L., 1978, A&A, 64, 43
- Hardee P. E., 1979, ApJ, 234, 47
- Hardee P. E., 2006, in P. A. Hughes & J. N. Bregman ed., Relativistic Jets: The Common Physics of AGN, Microquasars, and Gamma-Ray Bursts Vol. 856 of American Institute of Physics Conference Series, AGN Jets: A Review of Stability and Structure. pp 57-77
- Hardee P. E., Cooper M. A., Norman M. L., Stone J. M., 1992, ApJ, 399, 478
- Istomin Y. N., Pariev V. I., 1994, MNRAS, 267, 629
- Istomin Y. N., Pariev V. I., 1996, MNRAS, 281, 1
- Komissarov S. S., Barkov M. V., Vlahakis N., Königl A., 2007, MNRAS, 380, 51
- Lyubarskii Y. E., 1999, MNRAS, 308, 1006
- McKinney J. C., Blandford R. D., 2009, MNRAS, 394, L126
- Mignone A., Rossi P., Bodo G., Ferrari A., Massaglia S., 2010, MNRAS, 402, 7
- Mizuno Y., Hardee P., Nishikawa K.-I., 2007, ApJ, 662, 835
- Moll R., Spruit H. C., Obergaulinger M., 2008, A&A, 492, 621
- Nakamura M., Meier D. L., 2004, ApJ, 617, 123
- Narayan R., Li J., Tchekhovskoy A., 2009, ApJ, 697, 1681
- Osmanov Z., Mignone A., Massaglia S., Bodo G., Ferrari A., 2008, A&A, 490, 493
- Perucho M., Hanasz M., Martí J. M., Sol H., 2004, A&A, 427, 415
- Perucho M., Martí J. M., Cela J. M., Hanasz M., de La Cruz R., Rubio F., 2010, A&A, 519, A41+
- Sikora M., Begelman M. C., Madejski G. M., Lasota J.-P., 2005, ApJ, 625, 72
- Tomimatsu A., Matsuoka T., Takahashi M., 2001, Phys. Rev. D, 64, 123003
- Urpin V., 2002, A&A, 385, 14