Heat shock during rat embryo development in vitro results in decreased mitosis and abundant cell death (original) (raw)

1999, Reproductive Toxicology

Epidemiologic studies strongly suggest that in utero exposure to hyperthermia results in developmental defects in humans. Rats, mice, guinea pigs, and other species exposed to hyperthermia also exhibit a variety of developmental defects. Studies in our laboratory have focused on exposure to hyperthermia on Gestation Day (GD) 10 of rats in vivo or in vitro. Within 24 h after in vivo or in vitro exposure, delayed or abnormal CNS, optic cup, somite, and limb development can be observed. At birth, only rib and vertebral malformations are seen after hyperthermia on GD 10, and these have been shown to be due to alterations in somite segmentation. Unsegmented somites have been thought to result from a cell-cycle block in the presomitic mesoderm, from which somites emerge individually during normal development. In the present study, DNA fragmentation (terminal deoxynucleotidyl transferase (TdT) catalyzed fluorescein-12-dUTP DNA end-labelling), indicative of apoptotic cell death, and changes in cell proliferation were examined in vitro in 37°C control and heat treated (42°C for 15 min) GD 10 CD rat embryos. Embryos were returned to 37°C culture following exposure and evaluated 5, 8, or 18 h later. A temperature-related increase in TdT labelled cells was observed in the CNS, optic vesicle, neural tube, and somites. Increased cell death in the presomitic mesoderm also was evident. Changes in cell proliferation were examined using the cell-specific abundance of proliferating cell nuclear antigen (PCNA) and the quantification of mitotic figures. In neuroectodermal cells in the region of the optic cup, a change in the abundance of PCNA was not apparent, but a marked decrease in mitotic figures was observed. A significant change in cell proliferation in somites was not detected by either method. These results suggest that acute hyperthermia disrupts embryonic development through a combination of inappropriate cell death and/or altered cell proliferation in discrete regions of the developing rat embryo. Furthermore, postnatal vertebral and rib defects following disrupted somite development may be due, in part, to abundant cell death occurring in the presomitic mesoderm.