Bacterial small RNA regulators: versatile roles and rapidly evolving variations (original) (raw)
Related papers
Regulation by Small RNAs in Bacteria: Expanding Frontiers
Molecular Cell, 2011
Research on the discovery and characterization of small, regulatory RNAs in bacteria has exploded in recent years. These sRNAs act by base pairing with target mRNAs with which they share limited or extended complementarity, or by modulating protein activity, in some cases by mimicking other nucleic acids. Mechanistic insights into how sRNAs bind mRNAs and proteins, how they compete with each other, and how they interface with ribonucleases are active areas of discovery. Current work also has begun to illuminate how sRNAs modulate expression of distinct regulons and key transcription factors, thus integrating sRNA activity into extensive regulatory networks. In addition, the application of RNA deep sequencing has led to reports of hundreds of additional sRNA candidates in a wide swath of bacterial species. Most importantly, recent studies have served to clarify the abundance of remaining questions about how, when, and why sRNA-mediated regulation is of such importance to bacterial lifestyles.
Small Regulatory RNAs in Bacteria
Nucleic Acids and Molecular Biology, 2006
In recent years, small regulatory RNAs have been discovered at a staggering rate both in prokaryotes and eukaryotes. By now it is clear that post-transcriptional regulation of gene expression mediated by such RNAs is the rule rather than-as previously believed-the exception. In this chapter, we focus on small RNAs (sRNAs) encoded by bacterial chromosomes. The strategies for their discovery, their biological roles, and their mechanisms of action are discussed. Even though the number of well-characterized sR-NAs in, for example, the best studied model enterobacterium Escherichia coli,i ss t i l l small, the emerging pattern suggests that antisense mechanisms predominate. In terms of their roles in bacterial physiology, most of these RNAs appear to be involved in stress response regulation. Some other examples indicate functions in regulation of virulence. Two aspects of sRNA-mediated control arising from recent observations are addressed as well. Firstly, some sRNAs need proteins (notably Hfq) as helpers in their antisense activities-at this point the reason for this requirement is not understood. Secondly, only limited sequence complementarity is generally observed in antisense-target RNA pairs. This raises the fundamental question of how specific recognition is accomplished, and what the structure/sequence determinants for rapid and productive interaction are. 2 E.G.H. Wagner · F. Darfeuille
RNA-Binding Proteins Driving the Regulatory Activity of Small Non-coding RNAs in Bacteria
Frontiers in Molecular Biosciences, 2020
Small non-coding RNAs (sRNAs) are critical post-transcriptional regulators of gene expression. Distinct RNA-binding proteins (RBPs) influence the processing, stability and activity of bacterial small RNAs. The vast majority of bacterial sRNAs interact with mRNA targets, affecting mRNA stability and/or its translation rate. The assistance of RNA-binding proteins facilitates and brings accuracy to sRNA-mRNA basepairing and the RNA chaperones Hfq and ProQ are now recognized as the most prominent RNA matchmakers in bacteria. These RBPs exhibit distinct high affinity RNA-binding surfaces, promoting RNA strand interaction between a trans-encoding sRNA and its mRNA target. Nevertheless, some organisms lack ProQ and/or Hfq homologs, suggesting the existence of other RBPs involved in sRNA function. Along this line of thought, the global regulator CsrA was recently shown to facilitate the access of an sRNA to its target mRNA and may represent an additional factor involved in sRNA function. Ribonucleases (RNases) can be considered a class of RNA-binding proteins with nucleolytic activity that are responsible for RNA maturation and/or degradation. Presently RNase E, RNase III, and PNPase appear to be the main players not only in sRNA turnover but also in sRNA processing. Here we review the current knowledge on the most important bacterial RNA-binding proteins affecting sRNA activity and sRNA-mediated networks.
Impacts of Small RNAs and Their Chaperones on Bacterial Pathogenicity
Frontiers in Cellular and Infection Microbiology, 2021
Bacterial small RNAs (sRNAs) are critical post-transcriptional regulators that exert broad effects on cell physiology. One class of sRNAs, referred to as trans-acting sRNAs, base-pairs with mRNAs to cause changes in their stability or translation. Another class of sRNAs sequesters RNA-binding proteins that in turn modulate mRNA expression. RNA chaperones play key roles in these regulatory events by promoting base-pairing of sRNAs to mRNAs, increasing the stability of sRNAs, inducing conformational changes on mRNA targets upon binding, or by titrating sRNAs away from their primary targets. In pathogenic bacteria, sRNAs and their chaperones exert broad impacts on both cell physiology and virulence, highlighting the central role of these systems in pathogenesis. This review provides an overview of the growing number and roles of these chaperone proteins in sRNA regulation, highlighting how these proteins contribute to bacterial pathogenesis.
Diversity and Versatility in Small RNA-Mediated Regulation in Bacterial Pathogens
Frontiers in Microbiology, 2021
Bacterial gene expression is under the control of a large set of molecules acting at multiple levels. In addition to the transcription factors (TFs) already known to be involved in global regulation of gene expression, small regulatory RNAs (sRNAs) are emerging as major players in gene regulatory networks, where they allow environmental adaptation and fitness. Developments in high-throughput screening have enabled their detection in the entire bacterial kingdom. These sRNAs influence a plethora of biological processes, including but not limited to outer membrane synthesis, metabolism, TF regulation, transcription termination, virulence, and antibiotic resistance and persistence. Almost always noncoding, they regulate target genes at the post-transcriptional level, usually through base-pair interactions with mRNAs, alone or with the help of dedicated chaperones. There is growing evidence that sRNA-mediated mechanisms of actions are far more diverse than initially thought, and that th...
Translational regulation by bacterial small RNAs via an unusual Hfq-dependent mechanism
In bacteria, the canonical mechanism of translational repression by small RNAs (sRNAs) involves sRNA-mRNA base pairing that occludes the ribosome binding site (RBS), directly preventing translation. In this mechanism, the sRNA is the direct regulator, while the RNA chaperone Hfq plays a supporting role by stabilizing the sRNA. There are a few examples where the sRNA does not directly interfere with ribosome binding, yet translation of the target mRNA is still inhibited. Mechanistically, this non-canonical regulation by sRNAs is very poorly understood. Our previous work demonstrated repression of the mannose transporter manX mRNA by the sRNA SgrS, but the regulatory mechanism was unknown. Here, we report that manX translation is controlled by a molecular role-reversal mechanism where Hfq, not the sRNA, is the direct repressor. Hfq binding adjacent to the manX RBS is required for sRNA-mediated translational repression. Translation of manX is also regulated by another sRNA, DicF, via t...
Insights into the Function of Regulatory RNAs in Bacteria and Archaea
International Journal of Translational Medicine
Non-coding RNAs (ncRNAs) are functional RNA molecules that comprise about 80% of both mammals and prokaryotes genomes. Recent studies have identified a large number of small regulatory RNAs in Escherichia coli and other bacteria. In prokaryotes, RNA regulators are a diverse group of molecules that modulate a wide range of physiological responses through a variety of mechanisms. Similar to eukaryotes, bacterial microRNAs are an important class of ncRNAs that play an important role in the development and secretion of proteins and in the regulation of gene expression. Similarly, riboswitches are cis-regulatory structured RNA elements capable of directly controlling the expression of downstream genes in response to small molecule ligands. As a result, riboswitches detect and respond to the availability of various metabolic changes within cells. The most extensive and most widely studied set of small RNA regulators act through base pairing with RNAs. These types of RNAs are vital for pro...
Comparative Genomics of Small RNAs in Bacterial Genomes
OMICS: A Journal of Integrative Biology, 2007
In recent years, various families of small non-coding RNAs (sRNAs) have been discovered by experimental and computational approaches, both in bacterial and eukaryotic genomes. Although most of them await elucidation of their function, it has been reported that some play important roles in gene regulation. Here we carried out comparative genomics analysis of possible sRNAs that are computationally identified in 30 bacterial genomes from ␥and ␣-proteobacteria and Deinococcus radiodurans. Identified sRNAs are clustered by a complete-linkage clustering method to see conservation among the organisms. On average, sRNAs are found in approximately 30% of intergenic regions of each genome sequence. Of these, 25.7% are conserved among three or more organisms. Approximately 60% of the conserved sRNAs do not locate in orthologous intergenic regions, implying that sRNAs may be shuffled their positions in genomes. The current study implies that sRNAs may be involved in a more extensive range of functions in bacteria.