Log-PCR: A New Tool for Immediate and Cost-Effective Diagnosis of up to 85% of Dystrophin Gene Mutations (original) (raw)

Multiplex real-time PCR for detection of deletions and duplications in dystrophin gene

Biochemical and Biophysical Research Communications, 2006

Genetic testing of Duchenne and Becker muscular dystrophies (DMD/BMD) is a difficult task due to the occurrence of deletions or duplications within dystrophin (DMD) gene that requires dose sensitive tests. We developed three multiplex quantitative real-time PCR assays for dystrophin exon 5, 45, and 51 within two major hotspots of deletion/duplication. Each exon was co-amplified with a reference X-linked gene and the copy number of the target fragment was calculated by comparative threshold cycle method (DDC t ). We compared the performance of this method with previously described end-point PCR fluorescent analysis (EPFA) by studying 24 subjects carrying DMD deletions or duplications. We showed that Q-PCR is an accurate and sensitive technique for the identification of deletions and duplications in DMD/BMD. Q-PCR is a valuable tool for independent confirmation of EPFA screening, particularly when deletions/ duplications of single exons occur or for rapid identification of known mutations in at risk carriers.

Molecular diagnosis of Duchenne/Becker muscular dystrophy: enhanced detection of dystrophin gene rearrangements by oligonucleotide array-comparative genomic hybridization

Human Mutation, 2008

For the Focus Section on Array-CGH The dystrophinopathies, which include Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy, are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene (DMD). Approximately 70% of mutations causing DMD/BMD are deletions or duplications and the remainder are point mutations. Current clinical diagnostic strategies have limits of resolution that make detection of small DMD deletions and duplications difficult to identify. We developed an oligonucleotide-based array comparative genomic hybridization (array-CGH) platform for the enhanced identification of deletions and duplications in the DMD gene. Using this platform, 39 previously characterized patient samples were analyzed, resulting in the accurate identification of 38 out of 39 rearrangements. Array-CGH did not identify a 191-bp deletion partially involving exon 19 that created a junction fragment detectable by Southern hybridization. To further evaluate the sensitivity and specificity of this array, we performed concurrent blinded analyses by conventional methodologies and array-CGH of 302 samples submitted to our clinical laboratory for DMD deletion/duplication testing. Results obtained on the array-CGH platform were concordant with conventional methodologies in 300 cases, including 69 with clinically-significant rearrangements. In addition, the oligonucleotide array-CGH platform detected two duplications that conventional methods failed to identify. Five copy-number variations (CNVs) were identified; small size and location within introns predict the benign nature of these CNVs with negligible effect on gene function. These results demonstrate the utility of this array-CGH platform in detecting submicroscopic copy-number changes involving the DMD gene, as well as providing more precise breakpoint identification at high-resolution and with improved sensitivity.

Molecular Diagnosis of Duchenne/Becker muscular dystrophy in a family with no pathological antecedents of the disease

DOAJ (DOAJ: Directory of Open Access Journals), 2018

For the Focus Section on Array-CGH The dystrophinopathies, which include Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy, are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene (DMD). Approximately 70% of mutations causing DMD/BMD are deletions or duplications and the remainder are point mutations. Current clinical diagnostic strategies have limits of resolution that make detection of small DMD deletions and duplications difficult to identify. We developed an oligonucleotide-based array comparative genomic hybridization (array-CGH) platform for the enhanced identification of deletions and duplications in the DMD gene. Using this platform, 39 previously characterized patient samples were analyzed, resulting in the accurate identification of 38 out of 39 rearrangements. Array-CGH did not identify a 191-bp deletion partially involving exon 19 that created a junction fragment detectable by Southern hybridization. To further evaluate the sensitivity and specificity of this array, we performed concurrent blinded analyses by conventional methodologies and array-CGH of 302 samples submitted to our clinical laboratory for DMD deletion/duplication testing. Results obtained on the array-CGH platform were concordant with conventional methodologies in 300 cases, including 69 with clinically-significant rearrangements. In addition, the oligonucleotide array-CGH platform detected two duplications that conventional methods failed to identify. Five copy-number variations (CNVs) were identified; small size and location within introns predict the benign nature of these CNVs with negligible effect on gene function. These results demonstrate the utility of this array-CGH platform in detecting submicroscopic copy-number changes involving the DMD gene, as well as providing more precise breakpoint identification at high-resolution and with improved sensitivity.

Utility of MLPA in mutation analysis and carrier detection for Duchenne muscular dystrophy

Indian Journal of Human Genetics, 2012

Multiplex ligation probe amplification (MLPA) is a new technique to identify deletions and duplications and can evaluate all 79 exons in dystrophin gene in patients with Duchenne muscular dystrophy (DMD). Being semiquantitative, MLPA is also effective in detecting duplications and carrier testing of females; both of which cannot be done using multiplex PCR. It has found applications in diagnostics of many genetic disorders. AIM: To study the utility of MLPA in diagnosis and carrier detection for DMD. MATERIALS AND METHODS: Mutation analysis and carrier detection was done by multiplex PCR and MLPA and the results were compared. RESULTS AND CONCLUSIONS: We present data showing utility of MLPA in identifying mutations in cases with DMD/BMD. In the present study using MLPA, we identified mutations in additional 5.6% cases of DMD in whom multiplex PCR was not able to detect intragenic deletions. In addition, MLPA also correctly confirmed carrier status of two obligate carriers and revealed carrier status in 6 of 8 mothers of sporadic cases.

DGGE analysis as a tool to identify point mutations, de novo mutations and carriers of the dystrophin gene

Neuromuscular Disorders, 2002

Approximately 30% of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene and it is difficult to identify single nucleotide variations in genomic DNA using current diagnostic techniques. This represents a great obstacle in genetic analysis of these patients and genetic counselling of their families. In this work we performed denaturing gradient gel electrophoresis analysis to search for Duchenne muscular dystrophy mutations. We screened the whole dystrophin gene in 20 Brazilian Duchenne muscular dystrophy patients without a detectable deletion or duplication, and their mothers. The disease causing mutations, all of which have not been described before, were identified, and we could determine the carrier status of the mothers in all analyzed families. We concluded that denaturing gradient gel electrophoresis is very efficient in identifying small mutations and de novo mutations and in determining the carrier status of the mothers in these 30% of Duchenne muscular dystrophy patients. Denaturing gradient gel electrophoresis showed a high mutation detection rate (100%) for Duchenne muscular dystrophy and can be used as a current diagnostic procedure. q

Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes

BMC Genetics, 2009

Background: One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive. These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels. The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. Results: An automated process has been developed for the detection of deletions, duplications/ insertions and point mutations in any gene or family of genes and has been applied to ten genes