Microarray Analyses during Adipogenesis: Understanding the Effects of Wnt Signaling on Adipogenesis and the Roles of Liver X Receptor   in Adipocyte Metabolism (original) (raw)

Microarray Analyses during Adipogenesis: Understanding the Effects of Wnt Signaling on Adipogenesis and the Roles of Liver X Receptor α in Adipocyte Metabolism

Molecular and Cellular Biology, 2002

Wnt signaling maintains preadipocytes in an undifferentiated state. When Wnt signaling is enforced, 3T3-L1 preadipocytes no longer undergo adipocyte conversion in response to adipogenic medium. Here we used microarray analyses to identify subsets of genes whose expression is aberrant when differentiation is blocked through enforced Wnt signaling. Furthermore, we used the microarray data to identify potentially important adipocyte genes and chose one of these, the liver X receptor α (LXRα), for further analyses. Our studies indicate that enforced Wnt signaling blunts the changes in gene expression that correspond to mitotic clonal expansion, suggesting that Wnt signaling inhibits adipogenesis in part through dysregulation of the cell cycle. Experiments designed to uncover the potential role of LXRα in adipogenesis revealed that this transcription factor, unlike CCAAT/enhancer binding protein α and peroxisome proliferator-activated receptor gamma, is not adipogenic but rather inhibits...

Adipogenesis: A Complex Interplay of Multiple Molecular Determinants and Pathways

International Journal of Molecular Sciences

The formation of adipocytes during embryogenesis has been largely understudied. However, preadipocytes appear to originate from multipotent mesenchymal stromal/stem cells which migrate from the mesoderm to their anatomical localization. Most studies on adipocyte formation (adipogenesis) have used preadipocytes derived from adult stem/stromal cells. Adipogenesis consists of two phases, namely commitment and terminal differentiation. This review discusses the role of signalling pathways, epigenetic modifiers, and transcription factors in preadipocyte commitment and differentiation into mature adipocytes, as well as limitations in our understanding of these processes. To date, a limited number of transcription factors, genes and signalling pathways have been described to regulate preadipocyte commitment. One reason could be that most studies on adipogenesis have used preadipocytes already committed to the adipogenic lineage, which are therefore not suitable for studying preadipocyte co...

Tudor-SN, a Novel Coactivator of Peroxisome Proliferator-activated Receptor Protein, Is Essential for Adipogenesis

Journal of Biological Chemistry, 2014

Background: Tudor-SN has been observed in lipid droplets, but its role in lipid homeostasis remains unclear. Results: Tudor-SN and PPAR␥ are both regulated by C/EBP␤ during adipogenesis and significantly influence the regulation of PPAR␥ target genes. Conclusion: Tudor-SN functions as a co-activator of PPAR␥ in adipogenesis. Significance: The study has elucidated a new functional mechanism for the regulation of adipogenesis.

Adipogenesis: A Necessary but Harmful Strategy

International Journal of Molecular Sciences

Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical p...

Cellular models for understanding adipogenesis, adipose dysfunction, and obesity

2010

White adipose tissue (WAT) is no longer considered a depot for energy storage in the form of triglycerides, but is a secretory organ that releases factors, known as adipokines, capable of regulating several physiological processes. Alteration of WAT function with subsequent dysfunctional expression and secretion of adipokines plays a key role in the pathogenesis of obesity, diabetes, and other metabolic diseases. For this reason, a deeper understanding of the molecular mechanisms regulating adipocyte function is deemed necessary for planning strategies to treat and prevent obesity and its metabolic complications. This review examines cell culture models currently available for studying adipocyte biology. We focus on advantages, disadvantages and main differences between established preadipocyte cell lines and primary preadipocyte cultures. We revise protocols used to promote adipocyte differentiation and mature adipocytes dedifferentiation into preadipocytes. Finally, we briefly describe co-cultures of adipocytes with other cell types and three-dimensional adipocyte culture systems. These models allow investigation of cell-cell interactions with the cross-talk physiologically occurring between adipocytes and other cell types residing within or outside adipose tissue.

Adipogenesis and WNT signalling

Trends in endocrinology and metabolism: TEM, 2009

An inability of adipose tissue to expand consequent to exhausted capacity to recruit new adipocytes might underlie the association between obesity and insulin resistance. Adipocytes arise from mesenchymal precursors whose commitment and differentiation along the adipocytic lineage is tightly regulated. These regulatory factors mediate cross-talk between adipose cells, ensuring that adipocyte growth and differentiation are coupled to energy storage demands. The WNT family of autocrine and paracrine growth factors regulates adult tissue maintenance and remodelling and, consequently, is well suited to mediate adipose cell communication. Indeed, several recent reports, summarized in this review, implicate WNT signalling in regulating adipogenesis. Manipulating the WNT pathway to alter adipose cellular makeup, therefore, constitutes an attractive drug-development target to combat obesityassociated metabolic complications.

Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation

Nature cell biology, 2015

Pathological expansion of adipose tissue contributes to the metabolic syndrome. Distinct depots develop at various times under different physiological conditions. The transcriptional cascade mediating adipogenesis is established in vitro, and centres around a core program involving PPARγ and C/EBPα. We developed an inducible, adipocyte-specific knockout system to probe the requirement of key adipogenic transcription factors at various stages of adipogenesis in vivo. C/EBPα is essential for all white adipogenic conditions in the adult stage, such as adipose tissue regeneration, adipogenesis in muscle and unhealthy expansion of white adipose tissue during high-fat feeding or due to leptin deficiency. Surprisingly, terminal embryonic adipogenesis is fully C/EBPα independent, but does however depend on PPARγ; cold-induced beige adipogenesis is also C/EBPα independent. Moreover, C/EBPα is not vital for adipocyte survival in the adult stage. We reveal a surprising diversity of transcripti...

Adipogenesis: it is not just lipid that comprises adipose tissue

Journal of genomics, 2013

Adipogenesis is the initial component of forming cells (adipocytes) capable of assimilating lipid. Lipid metabolism is a metabolic process whereby lipid is stored for use when energy is required. Both processes involve cellular and molecular components. The gene regulations of each are different and (yet) confusingly, markers for both are used interchangeably. The focus of this paper is to provide elementary information regarding both processes and to introduce this issue of Journal of Genomics, whereby important aspects of adipogenesis and lipid metabolism involving gene expression are provided.