The potential dolichol recognition sequence of β -1,4-mannosyltransferase is not required for enzymic activity using phytanyl-pyrophosphoryl-α- N,N '- diacetylchitobioside as acceptor (original) (raw)
Related papers
The Biochemical journal, 1995
Dolichol is utilized in vivo as an unusually large anchor on which the precursor for N-linked oligosaccharides is assembled by a series of glycosyltransferases. The role of dolichol in enzyme substrate recognition is investigated. Thus the biosynthetic intermediate NN'-diacetylchitobiose was chemically linked to either dolichol or the much shorter fully saturated tetraisoprenoid phytanol. Both lipids were used as substrates by a recombinant, soluble beta-1,4-mannosyltransferase. beta-[3H]Mannosylated lipids from this reaction were then used as substrates for the subsequent mannosyltransferases from yeast or rat liver microsomes. It was found that both the dolichyl- and phytanyl-linked substrates were easily mannosylated to form Man5GlcNAc2, with some further mannosylation to Man7GlcNAc2 and Man9GlcNAc2 at low concentrations of lipid-linked substrate. It is concluded that dolichol is not necessary in vitro as part of the substrate for the mannosyltransferases in the biosynthetic ...
International Journal of Molecular Sciences, 2019
Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Additionally, the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly distur...
Acta Biochimica Polonica, 2005
In the yeast Saccharomyces cerevisiae the RER2 and SRT1 genes encode Rer2 and Srt1 proteins with cis-prenyltransferase (cis-PT-ase) activity. Both cis-PT-ases utilize farnesyl diphosphate (FPP) as a starter for polyprenyl diphosphate (dolichol backbone) formation. The products of the Rer2 and Srt1 proteins consist of 14-17 and 18-23 isoprene units, respectively. In this work we demonstrate that deletion or overexpression of SRT1 up-regulates the activity of Rer2p and dolichol content. However, upon overexpression of SRT1, preferential synthesis of longer-chain dolichols and a decrease in the amount of the shorter species are observed. Furthermore, overexpression of the ERG20 gene (encoding farnesyl diphosphate synthase, Erg20p) induces transcription of SRT1 mRNA and increases the levels of mRNA for RER2 and DPM1 (dolichyl phosphate mannose synthase, Dpm1p). Subsequently the enzymatic activity of Rer2p and dolichol content are also increased. However, the amount of Dpm1p or its enzym...