Effects of nuclear re-interactions in quasi-elastic neutrino–nucleus scattering (original) (raw)
Related papers
Relativistic models for quasi-elastic neutrino-nucleus scattering
2011
We present quasi-elastic neutrino-nucleus cross sections in the energy range from 150 MeV up to 5 GeV for the target nuclei 12 C and 56 Fe. A relativistic description of the nuclear dynamics and the neutrino-nucleus coupling is adopted. For the treatment of final-state interactions (FSI) we rely on two frameworks succesfully applied to exclusive electron-nucleus scattering: a relativistic optical potential and a relativistic multiple-scattering Glauber approximation. At lower energies, the optical-potential approach is considered to be the optimum choice, whereas at high energies a Glauber approach is more natural. Comparing the results of both calculations, it is found that the Glauber approach yields valid results down to the remarkably small nucleon kinetic energies of 200 MeV. We argue that the nuclear transparencies extracted from A(e, e ′ p) measurements can be used to obtain realistic estimates of the effect of FSI mechanisms on quasi-elastic neutrinonucleus cross sections. We present two independent relativistic plane-wave impulse approximation (RPWIA) calculations of quasi-elastic neutrino-nucleus cross sections. They agree at the percent level, showing the reliability of the numerical techniques adopted and providing benchmark RPWIA results.
Modeling neutrino-nucleus interactions in the quasi-elastic regime
2008
In the energy region below 1 GeV, neutrino-scattering off nuclei is dominated by quasi-elastic processes. Several effects influence the outcome of these reactions, and the result of cross section calculations depends on choices in model and parameterization. We discuss the main sensitivities of quasi-elastic processes and their influence on cross section results.
Simulation of nuclear effects in quasi elastic and resonant neutrino interactions
1998
The effects of nuclear re-interactions in quasi elastic and resonant neutrino interactions have been considered in the framework of the nuclear models of the DPMJET code. A preliminary investigation on the modifications induced on the final state has been performed. Some consequences affecting the experimental identification are discussed.
Nuclear model effects in neutrino-nucleus quasielastic scattering
2006
Nuclear model effects in neutrino-nucleus quasielastic scattering are studied within the distorted wave impulse approximation, using a relativistic shell model to describe the nucleus, and comparing it with the relativistic Fermi gas. Both charged-current and neutral-current processes are considered and, for the neutral-current case, the uncertainties that nuclear effects may introduce in measurements of the axial strange form-factor of the nucleon are investigated.
Nuclear effects in neutrino-nucleus interactions
Journal of Physics: Conference Series, 2010
An accurate description of the nuclear response functions for neutrino scattering in the Gev region is essential for the interpretation of present and future neutrino oscillation experiments. Due to the close similarity of electromagnetic and weak scattering processes, we will review the status of the scaling approach and of relativistic modeling for the inclusive electron scattering response functions in the quasielastic and ∆-resonance regions. In particular, recent studies have been focused on scaling violations and the degree to which these imply modifications of existing predictions for neutrino reactions. We will discuss sources and magnitude of such violations, emphasizing similarities and differences between electron and neutrino reactions.
Neutrino interactions with nuclei
2009
We present a model for neutrino-nucleus scattering in the energy region relevant for present and forthcoming neutrino-oscillation experiments. The model is based on the RPA treatment of the nuclear responses in the quasi-elastic and Delta-resonance region. It includes also in a phenomenological way nucleon knock-out. It aims at the description, within a single framework, of several final state channels i.e. quasi-elastic, incoherent and coherent one-pion production and two-or several-nucleon knock-out.
Relativistic models for quasielastic neutrino scattering
Physical Review C, 2006
We present quasi-elastic neutrino-nucleus cross sections in the energy range from 150 MeV up to 5 GeV for the target nuclei 12 C and 56 Fe. A relativistic description of the nuclear dynamics and the neutrino-nucleus coupling is adopted. For the treatment of final-state interactions (FSI) we rely on two frameworks succesfully applied to exclusive electron-nucleus scattering: a relativistic optical potential and a relativistic multiple-scattering Glauber approximation. At lower energies, the optical-potential approach is considered to be the optimum choice, whereas at high energies a Glauber approach is more natural. Comparing the results of both calculations, it is found that the Glauber approach yields valid results down to the remarkably small nucleon kinetic energies of 200 MeV. We argue that the nuclear transparencies extracted from A(e, e ′ p) measurements can be used to obtain realistic estimates of the effect of FSI mechanisms on quasi-elastic neutrinonucleus cross sections. We present two independent relativistic plane-wave impulse approximation (RPWIA) calculations of quasi-elastic neutrino-nucleus cross sections. They agree at the percent level, showing the reliability of the numerical techniques adopted and providing benchmark RPWIA results.
Overview of neutrino-nucleus quasielastic scattering
2009
Neutrino-nucleus reactions are surveyed. The approximations usually made are identified and a comparison to the corresponding electron-nucleus processes is presented. Impulse Approximation (IA), factorization of the cross-section and scaling approaches (SA) to lepton-nucleus scattering are examined in detail.
Quasielastic neutrino-nucleus scattering
Physical Review C, 2004
We study the sensitivity of neutral-current neutrino-nucleus scattering to the strange-quark content of the axial-vector form factor of the nucleon. A model-independent formalism for this reaction is developed in terms of eight nuclear structure functions. Taking advantage of the insensitivity of the ratio of proton (ν, ν ′ p) to neutron (ν, ν ′ n) yields to distortion effects, we compute all structure functions in a relativistic plane wave impulse approximation approach. Further, by employing the notion of a bound-state nucleon propagator, closed-form, analytic expressions for all nuclear-structure functions are developed in terms of an accurately calibrated relativistic meanfield model. Using a strange-quark contribution to the axial-vector form factor of g s A = −0.19, a significant enhancement in the proton-to-neutron yields is observed relative to one with g s A = 0.
Electron- versus neutrino-nucleus scattering
Journal of Physics G: Nuclear and Particle Physics, 2020
We illustrate the connection between electron and neutrino scattering off nuclei and show how the former process can be used to constrain the description of the latter. After reviewing some of the nuclear models commonly used to study lepton-nucleus reactions, we describe in detail the SuSAv2 model and show how its predictions compare with the available electron- and neutrino-scattering data over the kinematical range going from the quasi-elastic peak to pion-production and highly inelastic scattering.