Stimulatory effect of an anion(chloride)-rich ration on apparent calcium absorption in dairy cows (original) (raw)

The Effect of Cation-Anion Difference on Calcium Requirement, Feed Intake, Body Weight Gain, and Blood Gasses and Mineral Concentrations of Dairy Calves1

Journal of Dairy Science, 2001

Our objective was to examine the effects of two diets with different cation-anion differences on Ca requirements in the growing calf. Holstein calves (n = 48, 24 males) were blocked at 56 to 70 d after birth (80 ± 10 kg of body weight) according to sex and birth date and assigned randomly in a 2 × 3 factorial arrangement of dietary treatments containing cation-anion differences as meq (Na + K) − (Cl + S)/kg of diet dry matter and Ca content of 1) 0 and 0.35%, 2) 0 and 0.50%, 3) 0 and 0.65%, 4) 200 and 0.35%, 5) 200 and 0.50%, and 6) 200 and 0.65%. Feed intake and average daily gain did not differ among treatment groups. Plasma pH and Ca were unaffected by dietary Ca content or dietary cation-anion difference. Plasma Cl and P decreased linearly with increasing Ca content in the diet. Plasma HCO 3 increased linearly with increased dietary Ca content. Plasma HCO 3 and partial pressure of CO 2 were higher in calves fed the 200 compared with calves fed the 0 cation-anion difference diets. Plasma Cl was, however, lower in calves fed the 200 compared with calves fed the 0 meq diets. An interaction of Ca content and dietary cation-anion difference was detected for plasma P content. Urinary pH increased linearly with increasing dietary Ca content. Calves fed the 200 meq dietary cation-anion difference had higher urinary pH values than those fed the 0 meq diet. Urinary P excretion was not altered by dietary cation-anion difference or Ca content of the diet. Calves fed the 0 meq diet had higher urinary cocnentrations of Ca and Cl when compared with those fed the 200 meq diet. Bone ash, P, Ca, Mg, and K content of the 10th rib were not affected by dietary treatments. Breaking strength of the seventh and ninth ribs increased quadratically with increasing dietary Ca content. Dietary cation-1 This manuscript (99-07-91) is published with the approval of the director of the Kentucky Agricultural Experiment Station.

Effect of prepartum dietary calcium on intake and serum and urinary mineral concentrations of cows

Journal of dairy science, 2006

Nine multiparous and 12 primiparous cows were fed diets containing an anionic salt supplement and moderate Ca (0.99%) or high Ca (1.50%) concentrations for 21 d prepartum to determine the effects of dietary Ca concentration on serum and urine electrolytes and on postpartum intake and milk yield. Blood samples were collected during 21 to 1 d prepartum, 0 to 2 d postpartum, and 3 to 21 d postpartum. Dietary cation-anion difference (DCAD) for prepartum diets was approximately -6 mEq/100 g of dry matter (Na + K - Cl - S). Immediately postpartum, cows were fed diets with positive DCAD with greater than 1.00% Ca concentration. Mean serum Ca concentrations 21 to 1 d prepartum, 0 to 2 d postpartum, and 3 to 21 d postpartum were 9.62, 8.41, and 9.38 mg/dL. There were no treatment effects on serum Ca concentration. Mean serum Ca concentration was higher for primiparous than multiparous cows (9.34 vs. 8.93 mg/dL) for the trial and at calving (8.77 vs. 8.13 mg/dL). Mean serum HCO(3)(-) and urin...

Timothy hays differing in dietary cation-anion difference affect the capability of dairy cows to maintain their calcium homeostasis

Journal of Dairy Science, 2009

Forages low in dietary cation-anion difference (DCAD) can be used to decrease the DCAD in prepartum diet but the extent to which DCAD needs to be reduced is of recent interest. The objective of this study was to evaluate the effectiveness of timothy hays differing in DCAD at maintaining Ca homeostasis. Six nonlactating and nonpregnant multiparous Holstein cows were fed diets containing timothy (Phleum pratense L.) hay with DCAD values of 4.1 ± 3.6 (LOW), 14.1 ± 3.0 (MED), or 25.1 ± 2.5 (HIGH) mEq per 100 g of DM in a duplicated 3 × 3 Latin square design with 14-d experimental periods. The LOW and MED hays were produced by fertilizing established timothy fields at a rate of 224 kg CaCl 2 per ha, and HIGH hay was obtained from the same field where LOW hay was produced, but from a section not fertilized with CaCl 2 . Experimental diets, containing LOW, MED, or HIGH timothy hay at 71% of dietary DM, had DCAD values of 0.7, 7.3, and 14.4 mEq per 100 g of DM, respectively. Animals were fed at 6% of metabolic body weight, which provided 108% of their daily energy requirement. For each period, after a 12 d diet adaptation, cows were subjected to an EDTA challenge (3 cows each on d 13 and 14). Infusion of EDTA solution into the jugular vein decreases the concentration of blood ionized Ca, and the EDTA challenge protocol determined the resistance time and recovery time: the time required for the blood ionized Ca concentration to decrease to 60%, and the time required to recover to 90% of the prechallenge concentrations, respectively. Urine pH was lower when cows were fed LOW compared with HIGH diet (6.88 vs. 7.83), but urine pH when cows were fed MED diet (7.15) did not differ from that when cows received the LOW or HIGH diet. However, immediately before the EDTA challenge, blood pH was lower when cows were fed LOW or MED compared with HIGH diet (7.44 vs. 7.47). Although the resistance time was not affected by treatments, the recovery time was shorter when cows were fed the LOW compared with MED or HIGH diet (185 vs. 248 and 263 min, respectively). Blood pH decreased when cows were fed the LOW or MED diet, but the capability to maintain Ca homeostasis was enhanced only when cows received the LOW diet, in which the DCAD value was decreased to 1 mEq per 100 g of DM.

A low dietary cation-anion difference precalving and calcium supplementation postcalving increase plasma calcium but not milk production in a pasture-based system

Journal of dairy science, 2003

It was hypothesized that a reduction in the dietary cation-anion difference (DCAD) before calving, combined with an increase in Ca intake after calving, would reduce the incidence of periparturient hypocalcaemia and increase milk production in pasture-based dairy cows. Cows (n = 40) were assigned to one of two DCAD levels before calving (i.e., +7 and +50 mEq/100 g). Each group was then assigned to one of two dietary Ca concentrations after calving (i.e., 1.0 and 0.7%) in a 2 x 2 factorial design. The lower DCAD resulted in a nonrespiratory reduction in systemic pH as indicated by a lower urine pH. This acidosis resulted in an increased concentration of Ca in urine before calving. The lower precalving DCAD helped prevent the decline in blood Ca caused by the onset of lactation, even though blood Ca concentration was lower before calving compared with cows receiving a high DCAD. Supplementation of cows with Ca after calving increased plasma Ca concentration on the day of calving and d...

Calcium and Cation-Anion Balance Effects on Feed Intake, Body Weight Gain, and Humoral Response of Dairy Calves1

Journal of Dairy Science, 1994

Our objective was to examine whether feeding low cation-anion diets altered the Ca status of the growing calf. Holstein calves (n =32; 16 males) were blocked at 56 to 70 d after birth according to sex and birth date and assigned randomly to dietary treatments containing Ca content and cation-anion balances as mi11iequivalents of (Na + K) -(Cl + S)/loo g of dietary DM of .42% and -18, .52% and -18, .42% and 13, and .52% and 13. Feed intake did not differ among treatments. Calves fed the diet with cationanion balance of 13 had higher gain (.85 vs..71 kg/d) than those fed the diet with balance of -18. Venous blood pH (7.374 vs. 7.323), partial pressure of C02 (47.9 vs. 45.6 mm Hg), and bicarbonate (28.3 vs. 23.3 mmollL) were higher for calves fed the 13 versus -18 balances. Plasma Ca and P were unaffected by Ca or cation-anion balance. Urinary pH was higher for calves fed the high than the low balance (7.442 vs. 6.047). Urinary Cl and Ca excretion was higher for calves fed the low than the high balance. Breaking strengths for 7th and 9th ribs were higher for calves fed the high balance and higher for the 7th rib only for calves fed the high Ca diet. Cation-anion balance altered Ca metabolism, but it is unclear whether Ca requirements were also altered. (IThis manuscript (93-5-48) is published with the approval of the director of the Kentucky Agricultural Experimental Station.

Effects of anionic salts in a pre-partum dairy ration on calcium metabolism

The effects of anionic salts in the transition diet on serum and urine calcium at calving and on peripartal health, subsequent milk production and fertility performance were studied in a well-managed, high-producing Friesland dairy herd. Over a period of a year, approximately 21 days before the expected date of calving, 28 pre-partum heifers and 44 multiparous dry cows were randomly allocated within parity to 1 of 2 transition diets, designated control and experimental anionic diets. The anionic diet contained the same quantities of the basic transition ration fed to the control group as well as a standard anionic salt mixture containing 118 g NH4Cl, 36 g (NH4)2SO4 and 68 g MgSO4 (total 222 g) per animal per day. This reduced the DCAD to -11.68 mEq/100 g dietary dry matter compared to +13.57 for the control diet. Blood and urine were randomly sampled from 7 to 8 animals within each category within 3 hours post-partum. Serum calcium (total and ionised) and creatinine, urine calcium and creatinine and the fractional clearance of calcium were assessed. Relevant clinical, milk production, and fertility data were collected. The total serum calcium (2.07 versus 1.60 mmol/ ), serum ionised calcium (1.12 vs 1.02 mmol/ ), urine calcium (0.92 vs 0.10 mmol/ ) and the fractional clearance of calcium (1.88 vs 0.09 %) were significantly higher (P <0.01) at calving for multiparous cows fed the anionic diet compared to those fed the control diet. In the primiparous cows there were no significant differences in serum calcium levels. However, the urine calcium (1.07 vs 0.43 mmol/ ) and the fractional clearance of calcium was higher (1.75 vs 0.45 %) in cows fed the anionic diet (P <0.05 and 0.01 respectively). These results illustrated that there were benefits, although no differences were demonstrated with respect to health, milk production or fertility. The supplementation of diets with anionic salts in the last 2-3 weeks before calving has the potential to significantly improve parturient calcium homeostasis.

Effect of Anionic Salt and Highly Fermentable Carbohydrate Supplementations on Urine pH and on Experimentally Induced Hypocalcaemia in Cows

2004

Effect of anionic salt and highly fermentable carbohydrate supplementations on urine pH and on experimentally induced hypocalcaemia in cows. Acta vet. scand. 2004, 45, 139-147.-The objective of this experiment was to determine the effect of dietary grain on calcium homeostasis. Six rumen-fistulated dairy cows with 3 or more previous lactations and no history of parturient paresis were randomly assigned to a sequence of diets in a crossover study with 4 periods of 10 days each. Dietary treatments were: A control ration consisting of wrap grass silage alone (1), the control ration supplemented with ammonium chloride and ammonium sulphate salt solution (2), control ration following a period with supplementation (3) and control ration supplemented with increasing amounts of barley from 4 to 10 kg/cow per day, expected to produce subclinical rumen acidosis (4). Daily intake of the diets was adjusted to 14 kg DM/cow per day. On day 11, the calcium-regulating mechanisms in cows were challenged until recumbency by a standardized intravenous EDTA infusion and cows were left to recover spontaneously. Anion supplementation and the feeding of highly fermentable carbohydrate lowered urine pH below 7.0 due to subclinical acidosis. During spontaneous recovery from EDTA induced hypocalcaemia, the cows more quickly regained a whole blood free calcium concentration of 1.00 mmol/L if they had most recently been supplemented with either anionic salts or with increasing amounts of barley, as compared to the basic ration. It is concluded that so-called slug-feeding or 'steaming up' with highly fermentable carbohydrates before parturition in milk fever susceptible cows enhanced calcium homeostasis similar to the effect seen in cows on anionic diets.

Effect of anionic salts in concentrate mixture and calcium intake on some blood and urine minerals, acid-base balance and feed intake of dry pregnant cows on grass silage based feeding

Agricultural and Food Science, 2008

Twelve Ayrshire and eight Friesian cows were randomly assigned to one of four prepartum diets in a 2 x 2 factorially designed experiment to determine the effect of anionic diet and calcium (Ca) intake on Ca metabolism, acid-base status and feed intake of grass silage based diets during the dry period. Four diets provided either 34 g or 74 g total dietary Ca/day, and were either anionic or cationic. Dietary cation-anion balance (DCAB), calculated as milliequivalents [(Na+ + K+) - (Cl- + S2-)], was -247 mEq/kg dry matter (DM) in the low DCAB group and +34 mEq/kg DM in the high DCAB group. DCAB was formulated using NH4Cl, (NH4)2SO4 and MgCl2 as anionic salts. Cows received grass silage (5.2 kg DM), hay (0.9 kg DM) and concentrate mixture (1.6 kg DM) until calving. Blood and urine samples were collected 4, 3, 2 and 1 week before the expected calving date, at calving, the day after calving and 1 week following calving. The results indicate that the reduction of cation-anion balance induc...

Effects of Altering Dietary Cation-Anion Difference on Calcium and Energy Metabolism in Peripartum Cows

Journal of Dairy Science, 2000

Our objective was to determine the effects of varying dietary cation-anion differences (DCAD: meq[(Na + K) − (Cl + S)]/100 g of dry matter) in prepartum diets on Ca, energy, and endocrine status prepartum and postpartum. Holstein cows (n = 21) and heifers (n = 34) were fed diets with varying amounts of CaCl 2 , CaSO 4 , and MgSO 4 to achieve a DCAD of +15 (control), 0, or −15 meq/100 g of dry matter for the last 24 d before expected calving. Dietary Ca concentration was increased (by CaCO 3 supplementation) with decreasing DCAD. Plasma ionized Ca concentrations prepartum and at calving in both cows and heifers increased with reduced DCAD in the diet. At calving, plasma ionized Ca concentration was 3.67, 3.85, and 4.35 for cows and 4.44, 4.57, and 4.62 mg/dl for heifers fed diets containing +15, 0, and −15 DCAD, respectively. All heifers had normal concentrations of plasma ionized Ca (>4 mg/dl) at calving. Also at calving, plasma concentrations of parathyroid hormone and calcitriol were less in cows and heifers fed diets containing reduced DCAD, but the plasma concentration of hydroxyproline was not affected by diet. Prepartum dry matter intake, energy balance, and body weight gains were lower and concentration of liver triglyceride was higher for heifers but not cows fed the −15 DCAD diet. Also, nonesterified fatty acids the last week prepartum were positively correlated with liver triglyceride for heifers but not cows. Feeding of anionic salts plus CaCO 3 to reduce DCAD to −15 and increase Ca in prepartum diets prevents hypocalcemia at calving in cows, but decreases prepartum dry matter intake and increases the concentration of liver triglyceride in heifers. That heifers maintained calcium homeostasis at 2095 calving regardless of diet but ate less when fed the −15 DCAD diet suggests that they should not be fed anionic salts before calving. (Key words: prepartum diet, anionic salts, energy balance, hypocalcemia)