Phylogenetic host specificity and understanding parasite sharing in primates (original) (raw)

Parasites and the Evolutionary Diversification of Primate Clades

The American Naturalist, 2004

Coevolutionary interactions such as those between hosts and parasites have been regarded as an underlying cause of evolutionary diversification, but evidence from natural populations is limited. Among primates and other mammalian groups, measures of host diversification rates vary widely among lineages, but comparative studies have not yet identified a reliable explanation for this variation. In this study, we used a comprehensive data set of diseasecausing organisms from free-living primates to illustrate how phylogenetic comparative methods can be used to examine mammalian lineage diversity in relation to parasite species richness. Our results provide evidence that the phylogenetic diversity of primate clades is correlated positively with the number of parasite species harbored by each host and that this pattern is largely independent of other host traits that have been shown to influence diversification rates and parasite species richness in primates. We investigated two possible mechanisms that could explain this association, namely that parasites themselves drive host evolutionary diversification through processes linked with sexual selection and that host shifts or host sharing increases parasite species richness among diverse primate $15.00. All rights reserved.

Patterns of host specificity and transmission among parasites of wild primates

International Journal for Parasitology, 2005

Multihost parasites have been implicated in the emergence of new diseases in humans and wildlife, yet little is known about factors that influence the host range of parasites in natural populations. We used a comprehensive data set of 415 micro-and macroparasites reported from 119 wild primate hosts to investigate broad patterns of host specificity. The majority (68%) of primate parasites were reported to infect multiple host species, including animals from multiple families or orders. This pattern corresponds to previous studies of parasites found in humans and domesticated animals. Within three parasite groups (viruses, protozoans and helminths), we examined parasite taxonomy and transmission strategy in relation to measures of host specificity. Relative to other parasite groups, helminths were associated with the greatest levels of host specificity, whereas most viruses were reported to infect hosts from multiple families or orders. Highly significant associations between the degree of host specificity and transmission strategy arose within each parasite group, but not always in the same direction, suggesting that unique constraints influence the host range of parasites within each taxonomic group. Finally characteristics of over 100 parasite species shared between wild primates and humans, including those recognised as emerging in humans, revealed that most of these shared parasites were reported from multiple host orders. Furthermore, nearly all viruses that were reported to infect both humans and nonhuman primates were classified as emerging in humans. q

Parasite community structure in sympatric Bornean primates

International Journal for Parasitology, 2021

Parasites are important components of ecosystems, influencing trophic networks, competitive interactions and biodiversity patterns. Nonetheless, we are not nearly close to disentangling their complex roles in natural systems. Southeast Asia falls within global areas targeted as most likely to source parasites with zoonotic potential, where high rates of land conversion and fragmentation have altered the circulation of wildlife species and their parasites, potentially resulting in altered host-parasite systems. Although the overall biodiversity in the region predicts equally high, or even higher, parasite diversity, we know surprisingly little about wild primate parasites, even though this constitutes the first step towards a more comprehensive understanding of parasite transmission processes. Here, we characterise the gastrointestinal helminth parasite assemblages of a community of Bornean primates living along the Kinabatangan floodplain in Sabah (Malaysian Borneo), including two species endemic to the island. Through parasitological analyses, and by using several measures of parasite infection as proxies for parasite diversity and distribution, we show that (i) most parasite taxonomic groups are not limited to a single host, suggesting a greater flexibility for habitat disturbance, (ii) parasite infracommunities of nocturnal primates differ from their diurnal counterparts, reflecting both phylogenetic and ecological constraints, and (iii) soil-transmitted helminths such as whipworm, threadworm and nodule worm are widespread across the primate community. This study also provides new parasite records for southern pig-tailed macaques (Macaca nemestrina), silvered langurs (Trachypithecus cristatus) and Western tarsiers (Cephalopachus bancanus) in the wild, while adding to the limited records for the other primate species in the community. Given the information gap regarding primate-parasite associations in the region, the information presented here should prove relevant for future studies of parasite biodiversity and infectious disease ecology in Asia and elsewhere.

Metabarcoding of eukaryotic parasite communities describes diverse parasite assemblages spanning the primate phylogeny

Molecular Ecology Resources

Despite their ubiquity, in most cases little is known about the impact of eukaryotic parasites on their mammalian hosts. Comparative approaches provide a powerful method to investigate the impact of parasites on host ecology and evolution, though two issues are critical for such efforts: controlling for variation in methods of identifying parasites and incorporating heterogeneity in sampling effort across host species. To address these issues, there is a need for standardized methods to catalogue eukaryotic parasite diversity across broad phylogenetic host ranges. We demonstrate | 205 GOGARTEN ET Al.

From parasite encounter to infection: Multiple-scale drivers of parasite richness in a wild social primate population

American Journal of Physical Anthropology, 2012

Host parasite diversity plays a fundamental role in ecological and evolutionary processes, yet the factors that drive it are still poorly understood. A variety of processes, operating across a range of spatial scales, are likely to influence both the probability of parasite encounter and subsequent infection. Here, we explored eight possible determinants of parasite richness, comprising rainfall and temperature at the population level, ranging behavior and home range productivity at the group level, and age, sex, body condition, and social rank at the individual level. We used a unique dataset describing gastrointestinal parasites in a terrestrial subtropical vertebrate (chacma baboons, Papio ursinus), comprising 662 fecal samples from 86 individuals representing all age-sex classes across two groups over two dry seasons in a desert population. Three mixed

Phylogeny and geography predict pathogen community similarity in wild primates and humans

Proceedings of the Royal Society B: Biological Sciences, 2008

In natural systems, host species are often co-infected by multiple pathogen species, and recent work has suggested that many pathogens can infect a wide range of host species. An important question therefore is what determines the host range of a pathogen and the community of pathogens found within a given host species.

Primates and parasites: a case for a multidisciplinary approach

International Journal of Primatology, 1995

Interspecific, intraspecific, and interindividual variation in parasitic infections may correlate with environmental, demographic, behavioral, and human variables. Understanding these relationships is particularly important for conservation management issues for endangered species. We describe techniques for the noninvasive collection and preservation of fecal samples from wild primates and the salvaging of parasitological information from primate hosts in the field.