Chemical mass transfer in magmatic processes (original) (raw)

Abstract

Master Equation for crystal growth is solved for multicomponent systems in situations which allow for coupled diffusion of melt species. The structure of the solution is explored in some detail for the case of a constant diffusion coefficient matrix. Incorporating these results, the growth of plagioclase is modeled in undercooled tholeiitic melts by approximating interface growth rates with (1) a reduced growth rate function and with (2) calculated solid-liquid solution properties obtained from the silicate liquid solution model of appendix of Ghiorso 1985). For this purpose algorithms are provided for estimating the liquidus temperature or the chemical affinity of a multicomponent solid solution precipitating from a complex melt of specified bulk composition. Compositional trends in initial solids produced by successive degrees of undercooling are opposite to those predicted in the binary system NaA1Si3Os-CaA12Si2Os. Calculations suggest that the solid phase and interface melt compositions rapidly approach a "steady state" for a given degree of undercooling. Consequently, the overall isothermal growth rate of plagioclase forming from tholeiitic melts appears to be entirely diffusion controlled. In magmatic systems the multicomponent growth equations allow for the formation of oscillatory zoned crystals as a consequence of the "coupling" between interface reaction kinetics and melt diffusion. The magnitude of this effect is largely dependent upon the asymmetry of the diffusion coefficient matrix. Methods are described to facilitate the calibration of diffusion matrices from experimental data on multicomponent penetration curves.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (57)

  1. Abramowitz M, Stegun 1A (eds) (1972) Handbook of mathematical functions with formulas, graphs and mathematical tables. NBS, Appl Mathem Ser 55:1046
  2. Alibert C, Carron J-P (1980) Experimentales sur la diffusion des elements Majeurs entre verres ou liquides de compositions Ba- saltique, Rhyolitique et Phonolitique entre 900~ et 1300 ~ C, a Pression Ordinaire. Earth Planet Sci Lett 47:294-306
  3. Alibert C, Delbove F (1980) Donnres prrliminaires sur le rSle de l'eau dans la diffusion chimique entre rhyolite et phonolite fondues/t 900 ~ C sous une pression d'eau de 4 kbars. C R Acad Sci Paris Ser D 291:789 792
  4. Bowen NL (1913) The melting phenomena of the plagioclase feld- spars. Am J Sci 40:161-185
  5. Bowen NL (1921) Diffusion in Silicate Melts. J Geol 29:295-317
  6. Brearley M, Scarfe, CM (1986) Dissolution rates of upper mantle minerals in an alkali basalt melt at high pressure: an experimen- tal study and implications for ultramafic xenolith survival. J Petrol 27:1157-1182
  7. Carmichael ISE (1964) The Petrology of Thingmuli, A Tertiary Volcano in Eastern Iceland. J Petrol 5:435-460
  8. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford, p 510
  9. Churchill RV, Brown JW (1978) Fourier series and boundary value problems, 3rd edn. McGraw-Hill Book Company, New York, p 271
  10. Cooper AR (1968) The use and limitations of the concept of an Effective Binary Diffusion Coefficient for multicomponent diffu- sion. In: Wachtman JB Jr, Franklin AD (eds) Mass transport in oxides. NBS Spec Publ 196:7%84
  11. Cullinan HR Jr (1965) Analysis of the flux equations of multicom- ponent diffusion. I & EC Fundamentals 4:133-139
  12. De Groot SR (1951) Thermodynamics of irreversible processes. In- terscience, New York, p 242
  13. De Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover Publ Inc, New York, p 510
  14. Dew PM, Walsh J (1980) A set of library routines for the numerical solution of parabolic equations in 1 space variable. Numerical Analysis Report No. 49, University Manchester
  15. Dollard JD, Friedman CN (1979) Product integration. Addison- Wesley Publ Co, New York, p 253
  16. Evans BW, Moore JG (1968) Mineralogy as a function of depth in the Prehistoric Makaopuhi Tholeiific Lava Lake, Hawaii. Contrib Mineral Petrol 17:85 115
  17. Ghiorso MS (1984) Activity/composition relations in the ternary feldspars. Contrib Mineral Petrol 87:282-296
  18. Ghiorso MS (1985) Chemical mass transfer in magmatic processes. I. Thermodynamic relations and numerical algorithms. Contrib Mineral Petrol 90:107-120
  19. Ghiorso MS, Carmichael ISE (1985) Chemical mass transfer in magmatic processes. II. Applications in equilibrium crystalliza- tion, fractionation and assimilation. Contrib Mineral Petrol 90:121-141
  20. Ghiorso MS, Carmichael ISE, Rivers ML, Sack RO (1983) The Gibbs free energy of mixing of natural silicate liquids; An ex- panded regular solution approximation for the calculation of magmatic intensive variables. Contrib Mineral Petrol 84:107- 145
  21. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, New York, p 40l
  22. Graham A (1979) Matrix theory and applications for engineers and mathematicians. John Wiley & Sons, New York, p 295
  23. Graham A (1981) Kronecker products and matrix calculus with applications. John Wiley Sons, New York, p 130
  24. Hopper RW, Uhlmann DR (1974) Solute redistribution during crystallization at constant velocity and constant temperature. J Cryst Growth 21:203-213
  25. Jackson KA (1967) Current concepts in crystal growth from the melt. In: Progress in solid state chemistry. Pergamon Press, Oxford 4: 53-80
  26. Jambon A (1983) Diffusion dans les silicates fondus: un bilan des connaissances actuelles. Bull Minbral 106:229-246
  27. Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferric- ferrous ratio of natural silicate liquids equilibrated in air. Con- trib Mineral Petrol 83:136-140
  28. Kirkaldy JS, Weichert D, Zia-U1-Haq (1963) Diffusion in multicom- ponent metallic systems. VI. Some thermodynamic properties of the D matrix and the corresponding solutions of the diffusion equations. Can J Phys 41:21662173
  29. Kirkpatrick RJ (1975) Crystal growth from the melt: a review. Am Mineral 60:798-814
  30. Kirkpatrick RJ (1976) Towards a kinetic model for the crystalliza- tion of magma bodies. J Geophys Res 81:25655571
  31. Kirkpatrick RJ, Klein L, Uhlmann DR, Hays JF (1979) Rates and processes of crystal growth in the system anorthite-albite. J Geophys Res 84:3671 3676
  32. Krupka KM, Robie RA, Hemingway BS (1979) High-temperature heat capacities of corundum, periclase, anorthite, CaA12SizO s glass, muscovite, pyrophyllite, KA1Si30 s glass, grossular, and NaA1Si3Os glass. Am Mineral 64:86-101
  33. Lasaga AC (1982) Toward a master equation in crystal growth. Am J Sci 282:1264-1288
  34. Lesher CE (1986) Effects of silicate liquid composition on mineral- liquid element partitioning from Soret diffusion studies. J Geo- phys Res 91:6123-6141
  35. Lesher CE, Walker D (1986) Solution properties of silicate liquids from thermal diffusion experiments. Geochim Cosmochim Acta 50:1397-1411
  36. Medford GA (1973) Calcium diffusion in a Mugearite melt. Can J Earth Sci 10:394-402
  37. Mo X, Carmichael ISE, Rivers ML, Stebbins J (1982) The partial molar volume of Fe20 3 in multicomponent silicate liquids and the pressure dependence of oxygen fugacity in magmas. Mineral Mag 45:237-245
  38. Morse SA (1980) Basalts and phase diagrams. Springer, Berlin Hei- delberg New York, p 493
  39. Muan A (1979) Crystallization in silicate systems. In: Yoder HS (ed) Evolution of the Igneous Rocks. Princeton University Press, Princeton, NJ, p 77-132
  40. Nash JC (1979) Compact numerical methods for computers: linear algebra and function minimization. John Wiley & Sons, New York, p 227
  41. Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405-426
  42. Othmer HG, Scriven LE (1969) Interactions of reaction and diffu- sion in open systems. I & EC Fundamentals 8:302-313
  43. Prigogine I (1967) Introduction to the thermodynamics of irrevers- ible processes, 3rd edn. Interscience, New York, p 147
  44. Reed MH (1982) Calculation of multicomponent chemical equilib- ria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim Cosmochim Acta 46:513-528
  45. Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10 s Pascals) pressure and at higher temperatures. US Geol Surv Bull 1452:456
  46. Schiffman P, Lofgren GE (1982) Dynamic crystallization studies on the Grande Ronde Pillow Basalts, Central Washington. J Geol 90: 49-78
  47. Shaw HR (1972) Viscosities of magmatic silicate liquids: an empiri- cal method of prediction. Am J Sci 272:870-893
  48. Sincovec RF, Madsen NK (1975) Software for non-linear partial differential equations. ACM Trans Math Software 1:232-260
  49. Smith HD (1974) An experimental study of the diffusion of Na, K, and Rb in magmatic silicate liquids. PhD thesis, University of Oregon, p 207
  50. Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib Mineral Petrol 86:131-148
  51. Turnbull D, Cohen M (1960) Crystallization kinetics in glass forma- tion. In: MacKenzie JD (ed) Modern aspects of the vitreous state. Butterworths, London, pp 47-50
  52. Walker D, DeLong SE (1982) Soret separation of MORB magma. Contrib Mineral Petrol 79 : 231-240
  53. Walker D, DeLong SE (1984) A small Soret effect in spreading center gabbros. Contrib Mineral Petrol 85:203-208
  54. Walker D, Lesher CE, Hays JF (1981) Soret separation of lunar liquid. Proc Lunar Planet Sci Conf 12th, pp 991-999
  55. Watson EB (1981) Diffusion in magmas at depth in the earth: the effects of pressure and dissolved H20. Earth Planet Sci Lett 52:291-301
  56. Watson EB (1987) Chemical diffusion in magmas: an overview of experimental results and geochemical applications. In: Perchuk LL, Kushiro I (eds) Physical chemistry of magmas. Springer, Berlin Heidelberg New York (in press)
  57. Yoder HS (1973) Contemporaneous basaltic and rhyolitic magma. Am Mineral 58:153-171