Both α2,3- and α2,6-linked sialic acids on o-linked glycoproteins act as functional receptors for porcine sapovirus (original) (raw)

The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus

Virology Journal, 2011

Background: Transmissible gastroenteritis virus (TGEV) has a sialic acid binding activity that is believed to be important for enteropathogenicity, but that has so far appeared to be dispensable for infection of cultured cells. The aims of this study were to determine the effect of sialic acid binding for the infection of cultured cells under unfavorable conditions, and comparison of TGEV strains and mutants, as well as the avian coronavirus IBV concerning their dependence on the sialic acid binding activity. Methods: The infectivity of different viruses was analyzed by a plaque assay after adsorption times of 5, 20, and 60 min. Prior to infection, cultured cells were either treated with neuraminidase to deplete sialic acids from the cell surface, or mock-treated. In a second approach, pre-treatment of the virus with porcine intestinal mucin was performed, followed by the plaque assay after a 5 min adsorption time. A student's t-test was used to verify the significance of the results. Results: Desialylation of cells only had a minor effect on the infection by TGEV strain Purdue 46 when an adsorption period of 60 min was allowed for initiation of infection. However, when the adsorption time was reduced to 5 min the infectivity on desialylated cells decreased by more than 60%. A TGEV PUR46 mutant (HAD3) deficient in sialic acid binding showed a 77% lower titer than the parental virus after a 5 min adsorption time. After an adsorption time of 60 min the titer of HAD3 was 58% lower than that of TGEV PUR46. Another TGEV strain, TGEV Miller, and IBV Beaudette showed a reduction in infectivity after neuraminidase treatment of the cultured cells irrespective of the virion adsorption time. Conclusions: Our results suggest that the sialic acid binding activity facilitates the infection by TGEV under unfavorable environmental conditions. The dependence on the sialic acid binding activity for an efficient infection differs in the analyzed TGEV strains.

Is the sialic acid binding activity of the S protein involved in the enteropathogenicity of transmissible gastroenteritis virus?

Advances in experimental medicine and biology, 1998

Transmissible gastroenteritis virus (TGEV) is able to recognize sialic acid on sialo-glycoconjugates. Analysis of mutants indicated that single point mutations in the S protein (around amino acids 145-155) of TGEV may result both in the loss of the sialic acid binding activity and in a drastic reduction of the enteropathogenicity. From this observation we conclude that the sialic acid binding activity is involved in the enteropathogenicity of TGEV. On the basis of our recent results we propose that binding of sialylated macromolecules to the virions surface may increase virus stability. This in turn would explain how TGEV as an enveloped virus can survive the gastrointestinal passage and cause intestinal infections.

Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus

Journal of virology, 1997

Enteropathogenic transmissible gastroenteritis virus (TGEV), a porcine coronavirus, is able to agglutinate erythrocytes because of sialic acid binding activity. Competitive inhibitors that may mask the sialic acid binding activity can be inactivated by sialidase treatment of virions. Here, we show that TGEV virions with efficient hemagglutinating activity were also obtained when cells were treated with sialidase prior to infection. This method was used to analyze TGEV mutants for hemagglutinating activity. Recently, mutants with strongly reduced enteropathogenicity that have point mutations or a deletion of four amino acids within residues 145 to 155 of the S protein have been described. Here, we show that in addition to their reduced pathogenicity, these mutants also have lost hemagglutinating activity. These results connect sialic acid binding activity with the enteropathogenicity of TGEV.

Sialic acid functions in enterovirus 70 binding and infection

Journal of virology, 2002

The interaction of viruses with host cell receptors is the initial step in viral infection and is an important determinant of virus host range, tissue tropism, and pathogenesis. The complement regulatory protein decayaccelerating factor (DAF/CD55) is an attachment receptor for enterovirus 70 (EV70), a member of the Picornaviridae, commonly associated with an eye infection in humans known as acute hemorrhagic conjunctivitis. In early work, the EV70 receptor on erythrocytes, responsible for its hemagglutinating activity, was shown to be sensitive to neuraminidase, implying an essential role for sialic acid in virus attachment. Here, we extend these results to show that cell surface sialic acid is required for EV70 binding to nucleated cells susceptible to virus infection and that sialic acid binding is important in productive infection. Through the use of site-directed mutagenesis to eliminate the single N-linked glycosylation site of DAF and of a chimeric receptor protein in which the O-glycosylated domain of DAF was replaced by a region of the HLA-B44 molecule, a role in EV70 binding for the sialic acid residues of DAF was excluded, suggesting the existence of at least one additional, sialylated EV70-binding factor at the cell surface. Treatment of cells with metabolic inhibitors of glycosylation excluded a role for the N-linked oligosaccharides of glycoproteins but suggested that O-linked glycosylation is important for EV70 binding.

Characterization of the sialic acid binding activity of transmissible gastroenteritis coronavirus by analysis of haemagglutination-deficient mutants

The Journal of general virology, 2000

Transmissible gastroenteritis coronavirus (TGEV) agglutinates erythrocytes of several species by virtue of sialic acid binding activity of the surface protein S. We have isolated and characterized five haemagglutination-defective (HAD) mutants. In contrast to the parental virus, the mutants were unable to bind to porcine submandibulary mucin, a substrate rich in sialic acid. Each of the mutants was found to contain a single point mutation in the S protein (Cys155Phe, Met195Val, Arg196Ser, Asp208Asn or Leu209Pro), indicating that these amino acids are affecting the sialic acid binding site. In four of the HAD mutants a nearby antigenic site is affected in addition to the sialic acid binding site, as indicated by reactivity with monoclonal antibodies. The parental virus was found to have an increased resistance to the detergent octylglucoside compared to the HAD mutants. This effect depended on cellular sialoglycoconjugates bound to the virion. If the binding of sialylated macromolecu...

Binding of Transmissible Gastroenteritis Coronavirus to Cell Surface Sialoglycoproteins

Journal of Virology, 2002

The surface glycoprotein S of transmissible gastroenteritis virus (TGEV) has two binding activities. (i) Binding to porcine aminopeptidase N (pAPN) is essential for the initiation of infection. (ii) Binding to sialic acid residues on glycoproteins is dispensable for the infection of cultured cells but is required for enteropathogenicity. By comparing parental TGEV with mutant viruses deficient in the sialic acid binding activity, we determined the contributions of both binding activities to the attachment of TGEV to cultured cells. In the presence of a functional sialic acid binding activity, the amount of virus bound to two different porcine cell lines was increased sixfold compared to the binding of the mutant viruses. The attachment of parental virus was reduced to levels observed with the mutants when sialic acid containing inhibitors was present or when the cells were pretreated with neuraminidase. In virus overlay binding assays with immobilized cell surface proteins, the muta...

Characterization of novel porcine sapoviruses

Archives of Virology, 2010

Sapoviruses are common caliciviruses known to cause enteric diseases in humans and animals. SaVs are genetically highly heterogeneous and are presently classified in five genogroups that are further subdivided in a number of genotypes. In recent years, a number of novel animal SaV strains, mostly of swine origin, have been partially characterized and proposed to represent novel genogroups or genotypes. We previously reported the detection and partial characterization of a wide range of variable and novel SaV strains of uncertain taxonomic status in Canadian swine. We now report on further genomic characterization of two novel strains to clarify their taxonomic relationship to other swine and human SaVs. Detailed analysis of different regions of their genomes, including determination of their complete capsid sequence, did not permit clear taxonomic assignment according to current criteria. This situation appears reminiscent of that of a number of SaV strains of swine origin and calls for a classification update for this calicivirus genus. We also report the detection of swine GIII SaVs for the first time in Canada. GenBank accession numbers of all novel strains characterized in this study are indicated in the figure legends.

Infection of porcine small intestinal enteroids with human and pig rotavirus A strains reveals contrasting roles for histo-blood group antigens and terminal sialic acids

PLOS Pathogens, 2021

Rotaviruses (RVs) are a leading cause of acute viral gastroenteritis in young children and livestock worldwide. Growing evidence suggests that host cellular glycans, such as histo-blood group antigens (HBGAs) and sialic acids (SA), are recognized by the RV surface protein VP4. However, a mechanistic understanding of these interactions and their effects on RV infection and pathogenesis is lacking. Here, we established a porcine crypt-derived 3D intestinal enteroids (PIEs) culture system which contains all intestinal epithelial cells identified in vivo and represents a unique physiologically functional model to study RV-glycan interactions in vitro. PIEs expressing different HBGAs (A+, H+, and A+/H+) were established and isolation, propagation, differentiation and RV infection conditions were optimized. Differentiated PIEs were infected with human RV (HRV) G1P[8] Wa, porcine RV (PRV) G9P[13], PRV Gottfried G4P[6] or PRV OSU G5P[7] virulent and attenuated strains and virus replication ...

Bovine adenovirus serotype 3 utilizes sialic acid as a cellular receptor for virus entry

Virology, 2009

Bovine adenovirus serotype 3 (BAd3) and porcine adenovirus serotype 3 (PAd3) entry into the host cells is independent of Coxsackievirus-adenovirus receptor and integrins. The role of sialic acid in BAd3 and PAd3 entry was investigated. Removal of sialic acid by neuraminidase, or blocking sialic acid by wheat germ agglutinin lectin significantly inhibited BAd3, but not PAd3, transduction of Madin Darby bovine kidney cells. Maackia amurensis agglutinin or Sambucus nigra (elder) agglutinin treatment efficiently blocked BAd3 transduction suggesting that BAd3 utilized α(2,3)linked and α(2,6)-linked sialic acid as a cell receptor. BAd3 transduction of MDBK cells was sensitive to sodium periodate, bromelain, or trypsin treatment indicating that the receptor sialoconjugate was a glycoprotein rather than a ganglioside. To determine sialic acid-containing cell membrane proteins that bind to BAd3, virus overlay protein binding assay (VOPBA) was performed and showed that approximately 97 and 34 kDa cell membrane proteins containing sialic acid bind to BAd3. The results suggest sialic acid serves as a primary receptor for BAd3.

Enterovirus 70 Binds to Different Glycoconjugates Containing α2,3-Linked Sialic Acid on Different Cell Lines

Journal of Virology, 2005

Enterovirus 70 (EV70), the causative agent of acute hemorrhagic conjunctivitis, exhibits a restricted tropism for conjunctival and corneal cells in vivo but infects a wide spectrum of mammalian cells in culture. Previously, we demonstrated that human CD55 is a receptor for EV70 on HeLa cells but that EV70 also binds to sialic acid-containing receptors on a variety of other human cell lines. Virus recognition of sialic acid attached to underlying glycans by a particular glycosidic linkage may contribute to host range, tissue tropism, and pathogenesis. Therefore, we tested the possibility that EV70 binds to α2,3-linked sialic acid, like other viruses associated with ocular infections. Through the use of linkage-specific sialidases, sialyltransferases, and lectins, we show that EV70 recognizes α2,3-linked sialic acid on human corneal epithelial cells and on U-937 cells. Virus attachment to both cell lines is CD55 independent and sensitive to benzyl N -acetyl-α- d -galactosaminide, an i...