Extremely high current, high-brightness energy recovery linac (original) (raw)
Related papers
High-Current Energy-Recovering Electron Linacs
OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information), 2003
The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. We discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 35-48-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. We present an overview of envisioned ERL applications and a development path to achieving the required performance. We use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERa GeV-scale, comparatively low-current energy-recovery demonstration at JLab-to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.
Status of high current R&D Energy Recovery LINAC at Brookhaven National Laboratory
2011
An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing of concepts relevant for high-energy coherent electron cooling and electron-ion colliders. One of the goals is to demonstrate an electron beam with high charge per bunch ( 5 nC) and low normalized emittance ( 5 mm-mrad) at an energy of
1995
Under this CRADA we have carried out a joint research and development program between the Accelerator Test Facility at the National Synchrotron Light Source Department at Brookhaven National Laboratory and Northrop-Grumman Corporate Research Cmter of Princeton New Jersey. The subject of this research was the development of an advanced laser photocathode RF electron gun for the generation of high brighbress electron beams. The intent of this work was to enhance the performance of the electron gun recentþ developed at Brookhaven
State-of-the-art electron guns and injector designs for energy recovery linacs (ERL)
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006
A key technology issue of energy recovery linac (ERL) devices for high-power free-electron laser (FEL) and fourth generation light sources is the demonstration of reliable, high-brightness, high-power injector operation. Three ongoing programs that target up to 0.5 Ampere photocathode injector performance with required EFU brightness, are described. The first is a DC gun and superconducting RF (SRF) booster cryomodule. Such a 748.5 MHz device is being assembled and will be tested up to 100 mA at the Thomas Jefferson National Accelerator Facility (JLAB) beginning in 2006. The second approach is a high-current normal-conducting RF (NCRF) injector. A 700 MHz gun will undergo thermal test in late 2005 at the Los Alamos National Laboratory (LANL), which when equipped with a suitable cathode, would be capable of exceeding 0.5 Ampere operation. Finally, a half-cell 703.75 MHz SRF gun with a diamond amplifier and other cathodes, will be tested to 0.5 Ampere at the Brookhaven National Laboratory (BNL) in 2007. The status and projected performance for each of these injector projects is presented.
Ampere average current photoinjector and energy recovery linac
Proc of FEL, 2004
High-power Free-Electron Lasers were made possible by advances in superconducting linac operated in an energy-recovery mode. In order to get to much higher power levels, say a fraction of a megawatt average power, many technological barriers are yet to be broken. We describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun employing a new secondary-emission multiplying cathode, an accelerator cavity, both capable of producing of the order of one ampere average current and plans for an ERL based on these units.
Energy-recovery linac project at Cornell University
Journal of Synchrotron Radiation, 2003
There is considerable interest in using superconducting electron linacs with energy recovery as synchrotron radiation sources. Such energy recovery linacs (ERLs) would open new regimes of X-ray science because they are capable of producing ultra-brilliant X-ray beams [> 5 Â 10 22 photons s À1 (0.1% bandwidth) À1 mm À2 mrad À2 at 10 keV], maintaining a very small source size ($3 mm r.m.s.) suitable for micro X-ray beams, and making very intense fast ($100 fs) X-ray pulses. Each of these characteristics would permit the execution of experiments that are not feasible with existing synchrotron sources. Many technical issues must be satisfactorily resolved before the potential of a full-scale ERL can be realised, including the generation of high average current (10 to 100 mA), high-brightness electron beams (0.015 to 0.15 nm rad emittances, respectively); acceleration of these beams to energies of 5±7 GeV without unacceptable emittance degradation; stable and ef®cient operation of superconducting linear accelerators at very high gradients etc. Cornell University, in collaboration with Jefferson Laboratory, has proposed to resolve these issues by the construction of a 100 MeV, 100 mA prototype ERL. The intention is to then utilize the information that is learned from the prototype to propose the construction of a full-scale ERL light source.
Energy recovery linacs in high-energy and nuclear physics
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006
Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.
Electron Beam Guns for High Energy Electron Accelerators: An Overview
Journal of Modern Physics, 2013
Thermionic electron beam is a fundamental part of all types of linear accelerators around the world in the field of Experimental High Energy Physics. Thermionic beam is very inexpensive and simple to produce. In this work, we give an overview of generation, design and applications of the electron beam with particular reference to e-beam generation at high energy linear accelerators. Experimental data are presented in tabular form for ready reference. We also make an evaluation of these high energy sources with our in-house designed e-beam gun. Finally, a comparison has been presented in terms of characteristic parameters of all these high performance sources.
HIGH POWER ELECTRON ACCELERATOR PROGRAMME AT BARC
Bhabha Atomic Research Centre in India has taken up the indigenous design & development of high power electron accelerators for industrial, research and cargo scanning applications. For this purpose, Electron Beam Centre (EBC) has been set up at Navi Mumbai, India. Pulsed RF Linacs, with on-axis coupled cavity configuration, include the 10 MeV Industrial RF linac, as well as 9 MeV linac and compact 6 MeV linac for cargo scanning applications. Industrial DC accelerators include a 500 keV Cockroft-Walton machine and 3 MeV Dynamitron. Several radiation processing applications, such as material modification, food preservation, flue-gas treatment, etc. have been demonstrated using these accelerators. Cargo-scanning linacs have been successfully commissioned and are being characterized for the required x-ray output. A 30 MeV RF Linac, for research applications, such as shielding studies and n-ToF experiments, is being designed and developed. For ADS studies, a 100 MeV, 100kW RF Linac system is proposed. This paper presents the details of the design of these accelerators, their development, current status and utilization for various applications.
High current energy recovery linac at BNL
2005
Abstract We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered.