Detecting the intention to move upper limbs from electroencephalographic brain signals (original) (raw)
Related papers
Detection of self-paced reaching movement intention from EEG signals
Frontiers in Neuroengineering, 2012
Future neuroprosthetic devices, in particular upper limb, will require decoding and executing not only the user's intended movement type, but also when the user intends to execute the movement. This work investigates the potential use of brain signals recorded non-invasively for detecting the time before a self-paced reaching movement is initiated which could contribute to the design of practical upper limb neuroprosthetics. In particular, we show the detection of self-paced reaching movement intention in single trials using the readiness potential, an electroencephalography (EEG) slow cortical potential (SCP) computed in a narrow frequency range (0.1-1 Hz). Our experiments with 12 human volunteers, two of them stroke subjects, yield high detection rates prior to the movement onset and low detection rates during the non-movement intention period. With the proposed approach, movement intention was detected around 500 ms before actual onset, which clearly matches previous literature on readiness potentials. Interestingly, the result obtained with one of the stroke subjects is coherent with those achieved in healthy subjects, with single-trial performance of up to 92% for the paretic arm. These results suggest that, apart from contributing to our understanding of voluntary motor control for designing more advanced neuroprostheses, our work could also have a direct impact on advancing robot-assisted neurorehabilitation.
2020
Currently, one of the challenges in EEG-based brain-computer interfaces (BCI) for neurorehabilitation is the recognition of the intention to perform different movements from the same limb. This would allow finer control of neurorehabilitation and motor recovery devices by end-users. To address this issue, we assess the feasibility of recognizing two rehabilitative right upper-limb movements from pre-movement EEG signals. These rehabilitative movements were performed self-selected and self-initiated by the users using a motor rehabilitation robotic device. This work proposes anticipatory detection scenarios that discriminate EEG signals corresponding to non-movement state and movement intentions of two same-limb movements. The studied movements were discriminated above the empirical chance levels for all proposed detection scenarios. Percentages of correctly anticipated trials ranged from 64.3% to 77.0%, and the detection times ranged from 620 to 300 ms prior to movement initiation. ...
Self-paced movement intention detection from human brain signals: Invasive and non-invasive EEG
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2012
Neural signatures of humans' movement intention can be exploited by future neuroprosthesis. We propose a method for detecting self-paced upper limb movement intention from brain signals acquired with both invasive and noninvasive methods. In the first study with scalp electroencephalograph (EEG) signals from healthy controls, we report single trial detection of movement intention using movementrelated potentials (MRPs) in a frequency range between 0.1 to 1 Hz. Movement intention can be detected above chance level (p<0.05) on average 460 ms before the movement onset with low detection rate during the non-movement intention period. Using intracranial EEG (iEEG) from one epileptic subject, we detect movement intention as early as 1500 ms before movement onset with accuracy above 90% using electrodes implanted in the bilateral supplementary motor area (SMA). The coherent results obtained with non-invasive and invasive method and its generalization capabilities across different days of recording, strengthened the theory that self-paced movement intention can be detected before movement initiation for the advancement in robot-assisted neurorehabilitation.
Applied Sciences
In this study, we aimed to evaluate the effectiveness of a brain robot in rehabilitation that combines motor imagery (MI), robotic motor assistance, and electrical stimulation. Thirteen in-patients with severe post-stroke hemiplegia underwent electroencephalography (EEG), measured according to the international 10–20 method, during MI. The dicephalus robotic system (DiC) was activated by detecting event-related desynchronization (ERD) using the Markov switching model (MSM) and relative power (RP) from the EEG of the motor cortex (C3 and C4). The reaction times (the time between ERD detection and DiC activation) of the MSM and RP were compared using Wilcoxon’s signed rank sum test. ERD was detected in all 13 and 12 patients with the MSM and RP, respectively. The DiC reaction time for the ERD detection process was significantly shorter for the MSM (13.02 ± 0.16 s) than for the RP (19.95 ± 7.45 s) (W = 9, p = 0.0037). The results of this study suggest that ERD responses can be detected...
How capable is non-invasive EEG data of predicting the next movement? A mini review
Frontiers in human neuroscience, 2013
In this study we summarize the features that characterize the pre-movements and pre-motor imageries (before imagining the movement) electroencephalography (EEG) data in humans from both Neuroscientists' and Engineers' point of view. We demonstrate what the brain status is before a voluntary movement and how it has been used in practical applications such as brain computer interfaces (BCIs). Usually, in BCI applications, the focus of study is on the after-movement or motor imagery potentials. However, this study shows that it is possible to develop BCIs based on the before-movement or motor imagery potentials such as the Bereitschaftspotential (BP). Using the pre-movement or pre-motor imagery potentials, we can correctly predict the onset of the upcoming movement, its direction and even the limb that is engaged in the performance. This information can help in designing a more efficient rehabilitation tool as well as BCIs with a shorter response time which appear more natural ...
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2014
Stroke can be a source of significant upper extremity dysfunction and affect the quality of life (QoL) in survivors. In this context, novel rehabilitation approaches employing robotic rehabilitation devices combined with brain-machine interfaces can greatly help in expediting functional recovery in these individuals by actively engaging the user during therapy. However, optimal training conditions and parameters for these novel therapeutic systems are still unknown. Here, we present preliminary findings demonstrating successful movement intent detection from scalp electroencephalography (EEG) during robotic rehabilitation using the MAHI Exo-II in an individual with hemiparesis following stroke. These findings have strong clinical implications for the development of closed-loop brain-machine interfaces to robotic rehabilitation systems.
Computational and Mathematical Methods in Medicine, 2015
The movement-related cortical potential (MRCP) is a low-frequency negative shift in the electroencephalography (EEG) recording that takes place about 2 seconds prior to voluntary movement production. MRCP replicates the cortical processes employed in planning and preparation of movement. In this study, we recapitulate the features such as signal’s acquisition, processing, and enhancement and different electrode montages used for EEG data recoding from different studies that used MRCPs to predict the upcoming real or imaginary movement. An authentic identification of human movement intention, accompanying the knowledge of the limb engaged in the performance and its direction of movement, has a potential implication in the control of external devices. This information could be helpful in development of a proficient patient-driven rehabilitation tool based on brain-computer interfaces (BCIs). Such a BCI paradigm with shorter response time appears more natural to the amputees and can al...
2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Motor rehabilitation based on brain-machine interfaces (BMI) has been shown as a feasible option for stroke patients with complete paralysis. However, the pathologic EEG activity after a stroke makes the detection of movement intentions in these patients challenging, especially in those with damages involving the motor cortex. Residual electromyographic activity in those patients has been shown to be decodable, even in cases when the movement is not possible. Hybrid BMIs combining EEG and EMG activity have been recently proposed, although there is little evidence about how they work for completely paralyzed stroke patients. In this study we propose a neural interface, relying on EEG, EMG or EEG+EMG features, to detect movement attempts. Twenty patients with a chronic stroke affecting their motor cortex were recruited, and asked to open and close their paralyzed hand while their electrophysiological signals were recorded. We show how EEG and EMG activities provide complementary information for detecting the movement intentions, being the accuracy of the hybrid BMI significantly higher than the EEG-based system. The obtained results encourage the integration of hybrid BMI systems for motor rehabilitation of patients with paralysis due to stroke.
IEEE Transactions on Biomedical Engineering, 2017
Stroke survivors usually require motor rehabilitation therapy as, due to the lesion, they completely or partially loss mobility in the limbs. Brain-Computer Interface technology offers the possibility of decoding the attempt to move paretic limbs in real time to improve existing motor rehabilitation. However, a major difficulty for the practical application of BCI to stroke survivors is that the brain rhythms that encode the motor states might be diminished due to the lesion. This study investigates the continuous decoding of natural attempt to move the paralyzed upper limb in stroke survivors from electroencephalographic signals of the unaffected contralesional motor cortex. Results: Experiments were carried out with the aid of six severely-affected chronic stroke patients performing/attempting self-selected reaching movements of the unaffected/affected upper limb. The EEG analysis showed significant cortical activation on the uninjured motor cortex when moving the contralateral unaffected arm and in the attempt to move the ipsilateral affected arm. Using this activity, significant continuous decoding of movement was obtained in 6 out of 6 participants in movements of the unaffected limb, and in 4 out of 6 participants in the attempt to move the affected limb. Conclusion: This work showed that it is possible to construct a decoder of the attempt to move the paretic arm for chronic stroke patients using the EEG activity of the healthy contralesional motor cortex. Significance: This decoding model could provide to stroke survivors with a natural, easy and intuitive way to achieve control of BCIs or robot-assisted rehabilitation devices.