Discovery of oxazolo[4,5-b]pyridines and related heterocyclic analogs as novel SIRT1 activators (original) (raw)

Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes

Nature, 2007

Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes 1,2 . SIRT1, an NAD + -dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity 3-9 . Resveratrol, a polyphenolic SIRT1 activator, mimics the antiageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival 10-14 . Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.

Resveratrol-like Compounds as SIRT1 Activators

International Journal of Molecular Sciences, 2022

The sirtuin 1 (SIRT1) activator resveratrol has emerged as a promising candidate for the prevention of vascular oxidative stress, which is a trigger for endothelial dysfunction. However, its clinical use is limited by low oral bioavailability. In this work, we have applied a previously developed computational protocol to identify the most promising derivatives from our in-house chemical library of resveratrol derivatives. The most promising compounds in terms of SIRT1 activation and oral bioavailability, predicted in silico, were evaluated for their ability to activate the isolated SIRT1 enzyme. Then, we assessed the antioxidant effects of the most effective derivative, compound 3d, in human umbilical vein endothelial cells (HUVECs) injured with H2O2 100 µM. The SIRT1 activator 3d significantly preserved cell viability and prevented an intracellular reactive oxygen species increase in HUVECs exposed to the oxidative stimulus. Such effects were partially reduced in the presence of a sirtuin inhibitor, sirtinol, confirming the potential role of sirtuins in the activity of resveratrol and its derivatives. Although 3d appeared less effective than resveratrol in activating the isolated enzyme, the effects exhibited by both compounds in HUVECs were almost superimposable, suggesting a higher ability of 3d to cross cell membranes and activate the intracellular target SIRT1.

Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol

Genes & development, 2015

Sirtuins with an extended N-terminal domain (NTD), represented by yeast Sir2 and human SIRT1, harbor intrinsic mechanisms for regulation of their NAD-dependent deacetylase activities. Elucidation of the regulatory mechanisms is crucial for understanding the biological functions of sirtuins and development of potential therapeutics. In particular, SIRT1 has emerged as an attractive therapeutic target, and the search for SIRT1-activating compounds (STACs) has been actively pursued. However, the effectiveness of a class of reported STACs (represented by resveratrol) as direct SIRT1 activators is under debate due to the complication involving the use of fluorogenic substrates in in vitro assays. Future efforts of SIRT1-based therapeutics necessitate the dissection of the molecular mechanism of SIRT1 stimulation. We solved the structure of SIRT1 in complex with resveratrol and a 7-amino-4-methylcoumarin (AMC)-containing peptide. The structure reveals the presence of three resveratrol mol...

Synthesis and Assay of SIRT1-Activating Compounds

Methods in Enzymology, 2016

The NAD +-dependent deacetylase SIRT1 plays key roles in numerous cellular processes including DNA repair, gene transcription, cell differentiation, and metabolism. Over-expression of SIRT1 protects against a number of age-related diseases including diabetes, cancer, and Alzheimer's disease. Moreover, overexpression of SIRT1 in the murine brain extends lifespan. A number of small-molecule sirtuin-activating compounds (STACs) that increase SIRT1 activity in vitro and in cells have been developed. While the mechanism for how these compounds act on SIRT1 was once controversial, it is becoming increasingly clear that they directly interact with SIRT1 and enhance its activity through an allosteric mechanism. Here, we present detailed chemical syntheses for four STACs, each from a distinct structural class. Also, we provide a general protocol for purifying active SIRT1 enzyme and outline two complementary enzymatic assays for characterizing the effects of STACs and similar compounds on SIRT1 activity.

A Molecular Mechanism for Direct Sirtuin Activation by Resveratrol

PLoS ONE, 2012

Sirtuins are protein deacetylases regulating metabolism, stress responses, and aging processes, and they were suggested to mediate the lifespan extending effect of a low calorie diet. Sirtuin activation by the polyphenol resveratrol can mimic such lifespan extending effects and alleviate metabolic diseases. The mechanism of Sirtuin stimulation is unknown, hindering the development of improved activators. Here we show that resveratrol inhibits human Sirt3 and stimulates Sirt5, in addition to Sirt1, against fluorophore-labeled peptide substrates but also against peptides and proteins lacking the non-physiological fluorophore modification. We further present crystal structures of Sirt3 and Sirt5 in complex with fluorogenic substrate peptide and modulator. The compound acts as a top cover, closing the Sirtuin's polypeptide binding pocket and influencing details of peptide binding by directly interacting with this substrate. Our results provide a mechanism for the direct activation of Sirtuins by small molecules and suggest that activators have to be tailored to a specific Sirtuin/substrate pair.

Sirt1 activation by resveratrol is substrate sequence-selective

Aging, 2013

Sirtuins are protein deacetylases used as therapeutic targets. Pharmacological Sirt1 activation has been questioned since the in vitro activator resveratrol failed to stimulate deacetylation of several physiological substrates. We tested the influence of substrate sequence by analyzing resveratrol effects on Sirt1-dependent deacetylation of 6802 physiological acetylation sites using peptide microarrays. Resveratrol stimulated deacetylation of a small set of sites and inhibited deacetylation of another set, whereas most substrates were hardly affected. Solution assays confirmed these substrate categories, and statistical analysis revealed their sequence features. Our results reveal substrate sequence dependence for Sirt1 modulation and suggest substrates contributing to resveratrol effects.

How much successful are the medicinal chemists in modulation of SIRT1: A critical review

European journal of medicinal chemistry, 2016

Silent information regulator two homologue one (SIRT1) is the most widely studied member of the sirtuin family related to histone deacetylases class III super-family using nicotinamide adenine dinucleotide (NAD(+)) as its cofactor. It is located in the nucleus but also modulates the targets in cytoplasm and mainly acts as transacetylase rather than deacetylase. SIRT1 specifically cleaves the nicotinamide ribosyl bond of NAD(+) and transfers the acetyl group from proteins to their co-substrate through an ADP- ribose-peptidyl imidate intermediate. It has been indicated that SIRT1 and its histone as well as non histone targets are involved in a wide range of biological courses including metabolic diseases, age related diseases, viral infection, inflammation, tumor-cell growth and metastasis. Modulation of SIRT1 expression may present a new insight in the discovery of a number of therapeutics. This review summarizes studies about SIRT1 and mainly focuses on the various modulators of SIR...

Molecular architecture of the human protein deacetylase Sirt1 and its regulation by AROS and resveratrol

Bioscience Reports, 2013

Sirtuins are NAD + -dependent protein deacetylases regulating metabolism, stress responses and ageing processes. Among the seven mammalian Sirtuins, Sirt1 is the physiologically best-studied isoform. It regulates nuclear functions such as chromatin remodelling and gene transcription, and it appears to mediate beneficial effects of a low calorie diet which can partly be mimicked by the Sirt1 activating polyphenol resveratrol. The molecular details of Sirt1 domain architecture and regulation, however, are little understood. It has a unique N-terminal domain and CTD (C-terminal domain) flanking a conserved Sirtuin catalytic core and these extensions are assumed to mediate Sirt1-specific features such as homo-oligomerization and activation by resveratrol. To analyse the architecture of human Sirt1 and functions of its N-and C-terminal extensions, we recombinantly produced Sirt1 and Sirt1 deletion constructs as well as the AROS (active regulator of Sirt1) protein. We then studied Sirt1 features such as molecular size, secondary structure and stimulation by small molecules and AROS. We find that Sirt1 is monomeric and has extended conformations in its flanking domains, likely disordered especially in the N-terminus, resulting in an increased hydrodynamic radius. Nevertheless, both termini increase Sirt1 deacetylase activity, indicating a regulatory function. We also find an unusual but defined conformation for AROS protein, which fails, however, to stimulate Sirt1. Resveratrol, in contrast, activates the Sirt1 catalytic core independent of the terminal domains, indicating a binding site within the catalytic core and suggesting that small molecule activators for other isoforms might also exist.

SIRT1 Modulating Compounds from High-Throughput Screening as Anti-Inflammatory and Insulin-Sensitizing Agents

Journal of …, 2006

The nicotinamide adenine dinucleotide (NAD + )-dependent protein deacetylase SIRT1 has been linked to fatty acid metabolism via suppression of peroxysome proliferator-activated receptor gamma (PPAR-γ) and to inflammatory processes by deacetylating the transcription factor NF-κB. First, modulation of SIRT1 activity affects lipid accumulation in adipocytes, which has an impact on the etiology of a variety of human metabolic diseases such as obesity and insulin-resistant diabetes. Second, activation of SIRT1 suppresses inflammation via regulation of cytokine expression. Using high-throughput screening, the authors identified compounds with SIRT1 activating and inhibiting potential. The biological activity of these SIRT1-modulating compounds was confirmed in cell-based assays using mouse adipocytes, as well as human THP-1 monocytes. SIRT1 activators were found to be potent lipolytic agents, reducing the overall lipid content of fully differentiated NIH L1 adipocytes. In addition, the same compounds have anti-inflammatory properties, as became evident by the reduction of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). In contrast, a SIRT1 inhibitory compound showed a stimulatory activity on the differentiation of adipocytes, a feature often linked to insulin sensitization. (Journal of Biomolecular Screening 2006:1-9) Journal of Biomolecular Screening 11(X); 2006 www.sbsonline.org 3 SIRT1 Modulating Compounds from HTS Journal of Biomolecular Screening 11(X); 2006 www.sbsonline.org 7 FIG. 4. SIRT1 inhibition overcomes activator-mediated tumor necrosis factor-alpha (TNF-α) suppression. (A) Experimental layout for the combination of SIRT1 inhibitor and activator in THP-1 cells. ELISA, enzyme-linked immunosorbent assay. (B) THP-1 cells were preincubated

Resveratrol and SIRT1 Activators for the Treatment of Aging and Age-Related Diseases

Resveratrol - Adding Life to Years, Not Adding Years to Life, 2019

Reduced calorie intake is a religious and medical practice known since very old times, but its direct influence on life span in all organisms, included humans, has been demonstrated in the modern era. Not only periodic fasting, but also natural or synthetic compounds that mimic this phenomenon are growing to slow aging and the onset of chronic morbidities. Resveratrol (RSV), a plant polyphenol, is an elixir of longevity for simple organisms and preclinical rodent models even if a beneficial role in humans is still debated. Its main rejuvenating mechanism copes with the activation of specific longevity genes called sirtuins. Among seven known mammalian sirtuins, sirtuin 1 is the most studied. This pleiotropic nicotinamide adenine dinucleotide (NAD)-based deacetylase maintains longevity by removing acetyl group in nuclear histones, transcription factors, and other DNA repairing proteins. Actually, an exciting challenge is to discover and test novel sirtuin 1 activators to extend life span and to treat age-associated disabilities. This chapter updates on the antiaging effect of RSV and sirtuin 1 activators in experimental animals and in humans. Finally, pros and cons on RSV analogues and sirtuin 1 activators tested in preclinical and clinical trials to hamper neurological deficit, cardiovascular complications, diabetes, bone and muscle deterioration, and cancer are discussed.