Whole Body Movement: Coordination of Arms and Legs in Walking and Running (original) (raw)

The how and why of arm swing during human walking

Gait & posture

Humans walk bipedally, and thus, it is unclear why they swing their arms. In this paper, we will review the mechanisms and functions of arm swinging in human gait. First, we discuss the potential advantages of having swinging arms. Second, we go into the detail on the debate whether arm swing is arising actively or passively, where we will conclude that while a large part of arm swinging is mechanically passive, there is an active contribution of muscles (i.e. an activity that is not merely caused by stretch reflexes). Third, we describe the possible function of the active muscular contribution to arm swinging in normal gait, and discuss the possibility that a Central Pattern Generator (CPG) generates this activity. Fourth, we discuss examples from pathological cases, in which arm swinging is affected. Moreover, using the ideas presented, we suggest ways in which arm swing may be used as a therapeutic aid. We conclude that (1) arm swing should be seen as an integral part of human bi...

Arm swing in human walking: What is their drive?

Gait & Posture, 2014

Although previous research has studied arm swing during walking, to date, it remains unclear what the contribution of passive dynamics versus active muscle control to arm swing is. In this study, we measured arm swing kinematics with 3D-motion analysis. We used a musculoskeletal model in OpenSim and generated dynamic simulations of walking with and without upper limb muscle excitations. We then compared arm swing amplitude and relative phase during both simulations to verify the extent to which passive dynamics contribute to arm swing. The results confirm that passive dynamics are partly responsible for arm swing during walking. However, without muscle activity, passive swing amplitude and relative phase decrease significantly (both p < 0.05), the latter inducing a more in-phase swing pattern of the arms. Therefore, we conclude that muscle activity is needed to increase arm swing amplitude and modify relative phase during human walking to obtain an out-phase movement relative to the legs.

The effects of arm swing on human gait stability

2010

bipedal walking showed that addition of a normal, human-like (passive) arm swing -that is, with the arms swinging inward when swinging forward -decreased global stability (in particular of sideto-side motion), while global stability (in particular of side-to-side SUMMARY Arm swing during human gait has been shown to reduce both angular momentum about the vertical and energy expenditure, and has been hypothesized to enhance gait stability. To examine this hypothesis, we studied the effect of arm swing on the local and global stability of steady-state gait, as well as the ability to perform adequate recovery actions following a perturbation. Trunk kinematics of 11 male subjects was measured in treadmill walking with normal and with restricted arm swing. In half of the trials, gait was perturbed by a position-controlled forward pull to the trunk. We constructed state spaces using data recorded from the unperturbed steady-state walking trials, and quantified local gait stability by calculating maximum Lyapunov exponents. In addition, we analyzed perturbation forces, the distance from the unperturbed gait pattern, and the return toward the normal gait pattern following an external perturbation. Walking without arm swing led to a non-significantly lower Lyapunov exponent (P0.06), significantly higher perturbation forces (P<0.05), and significantly slower movements away from the attractor (P<0.01). These results suggest that gait without arm swing is characterized by similar local stability to gait with arm swing and a higher perturbation resistance. However, return towards the normal gait pattern was significantly slower (P<0.05) when walking with restricted arms, suggesting that the arms play an important role in the recovery from a perturbation. Collectively, the results suggest that arm swing as such does not enhance gait stability, but rather that recovery movements of the arms contribute to the overall stability of human gait.

evidence of strut-like behavior at the shoulder

The limbs of running mammals are thought to function as inverted struts. When mammals run at constant speed, the ground reaction force vector appears to be directed near the point of rotation of the limb on the body such that there is little or no moment at the joint. If this is true, little or no external work is done at the proximal joints during constant-speed running. This possibility has important implications to the energetics of running and to the coupling of lung ventilation to the locomotor cycle. To test if the forelimb functions as an inverted strut at the shoulder during constant-speed running and to characterize the locomotor function of extrinsic muscles of the forelimb, we monitored changes in the recruitment of six muscles that span the shoulder (the m. pectoralis superficialis descendens, m. pectoralis profundus, m. latissimus dorsi, m. omotransversarius, m. cleidobrachialis and m. trapezius) to controlled manipulations of locomotor forces and moments in trotting dogs (Canis lupus familiaris Linnaeus 1753). Muscle activity was monitored while the dogs trotted at moderate speed (approximately 2·m·s -1 ) on a motorized treadmill. Locomotor forces were modified by (1) adding mass to the trunk, (2) inclining the treadmill so that the dogs ran up-and downhill (3) adding mass to the wrists or (4) applying horizontally directed force to the trunk through a leash. When the dogs trotted at constant speed on a level treadmill, the primary protractor muscles of the forelimb exhibited activity during the last part of the ipsilateral support phase and the beginning of swing phase, a pattern that is consistent with the initiation of swing phase but not with active protraction of the limb during the beginning of support phase. Results of the force manipulations were also consistent with the protractor muscles initiating swing phase and contributing to active braking via production of a protractor moment on the forelimb when the dogs decelerate. A similar situation appears to be true for the major retractor muscles of the forelimb. The m. pectoralis profundus and the m. latissimus dorsi were completely silent during the support phase of the ipsilateral limb when the dogs ran unencumbered and exhibited little or no increase in activity when the dogs carried added mass on their backs to increase any retraction torque during the support phase of constant-speed running. The most likely explanation for these observations is that the ground force reaction vector is oriented very close to the fulcrum of the forelimb such that the forelimb functions as a compliant strut at the shoulder when dogs trot at constant speed on level surfaces. Because the moments at the fulcrum of the pectoral girdle appear to be small during the support phase of a trotting step, a case can be made that it is the activity of the extrinsic appendicular muscles that produce the swing phase of the forelimb that explain the coupled phase relationship between ventilatory airflow and the locomotor cycle in trotting dogs.

Dynamic arm swinging in human walking Subject collections

2020

Humans tend to swing their arms when they walk, a curious behaviour since the arms play no obvious role in bipedal gait. It might be costly to use muscles to swing the arms, and it is unclear whether potential benefits elsewhere in the body would justify such costs. To examine these costs and benefits, we developed a passive dynamic walking model with free-swinging arms. Even with no torques driving the arms or legs, the model produced walking gaits with arm swinging similar to humans. Passive gaits with arm phasing opposite to normal were also found, but these induced a much greater reaction moment from the ground, which could require muscular effort in humans. We therefore hypothesized that the reduction of this moment may explain the physiological benefit of arm swinging. Experimental measurements of humans (n ¼ 10) showed that normal arm swinging required minimal shoulder torque, while volitionally holding the arms still required 12 per cent more metabolic energy. Among measures of gait mechanics, vertical ground reaction moment was most affected by arm swinging and increased by 63 per cent without it. Walking with opposite-to-normal arm phasing required minimal shoulder effort but magnified the ground reaction moment, causing metabolic rate to increase by 26 per cent. Passive dynamics appear to make arm swinging easy, while indirect benefits from reduced vertical moments make it worthwhile overall.

Prilutsky, B.: Coordination of two-and one-joint muscles: functional consequences and implications for motor control. Motor Control 4(1), 48-52

Motor control

It has been hypothesized previously that because a strong correlation was found between the difference in electromyographic activity (EMG) of rectus femoris (RF) and hamstrings (HA; EMG RF ±EMG HA ) and the difference in the resultant moments at the knee and hip (M k ±M h ) during exertion of external forces on the ground by the leg, input from skin receptors of the foot may play an important role in the control of the distribution of the resultant moments between the knee and hip by modulating activation of the two-joint RF and HA. In the present study, we examined the coordination of RF and HA during the swing phase of walking and running at different speeds, where activity of foot mechanoreceptors is not modulated by an external force. Four subjects walked at speeds of 1.8 m/s and 2.7 m/s and ran at speeds of 2.7 m/s and 3.6 m/s on a motor-driven treadmill. Surface EMG of RF, semimembranosus (SM), and long head of biceps femoris (BF) and coordinates of the four leg joints were recorded. An inverse dynamics analysis was used to calculate the resultant moments at the ankle, knee, and hip during the swing phase. EMG signals were rectified and low-pass filtered to obtain linear envelopes and then shifted in time to account for electromechanical delay between EMG and joint moments. During walking and running at all studied speeds, mean EMG envelope values of RF were statistically (P`0.05) higher in the first half of the swing (or at hip flexion/knee extension combinations of joint moments) than in the second half (or at hip extension/knee flexion combinations of joint moments). Mean EMG values of BF and SM were higher (P`0.05) in the second half of the swing than in the first half. EMG and joint moment peaks were substantially higher (P`0.05) in the swing phase of walking at 2.7 m/s than during the swing phase of running at the same speed. Correlation coefficients calculated between the differences (EMG RF ±EMG HA ) and (M k ±M h ), taken every 1% of the swing phase, were higher than 0.90 for all speeds of walking and running. Since the close relationship between EMG and joint moments was obtained in the absence of an external force applied to the foot, it was suggested that the observed coordination of RF and HA can be regulated without a stance-specific modulation of cutaneous afferent input from the foot. The functional role of the observed coordination of RF and HA was suggested to reduce muscle fatigue.

Trunk movements in human locomotion

Acta Physiologica Scandinavica, 1984

Trunk movements in the frontal and sagittal planes were studied in 10 healthy males (18–35 yrs) during normal walking (1.0–2.5 m/s) and running (2.0–6.0 m/s) on a treadmill. Movements were recorded with a Selspot optoelectronic system. Directions, amplitudes and phase relationships to the stride cycle (defined by the leg movements) were analyzed for both linear and angular displacements. During one stride cycle the trunk displayed two oscillations in the vertical (mean net amplitude 2.5–9.5 cm) and horizontal, forward—backward directions (mean net amplitude 0.5–3 cm) and one oscillation in the lateral, side to side direction (mean net amplitude 2–6 cm). The magnitude and timing of the various oscillations varied in a different way with speed and mode of progression. Differences in amplitudes and timing of the movements at separate levels along the spine gave rise to angular oscillations with a similar periodicity as the linear displacements in both planes studied. The net angular trunk tilting in the frontal plane increased with speed from 3–10°. The net forward-backward trunk inclination showed a small increase with speed up to 5° in fast running. The mean forward inclination of the trunk increased from 6° to about 13° with speed. Peak inclination to one side occurred during the support phase of the leg on the same side. Peak forward inclination was reached at the initiation of the support phase in walking, whereas in running the peak inclination was in the opposite direction at this point. The adaptations of trunk movements to speed and mode of progression could be related to changing mechanical conditions and different demands on equilibrium control due to e.g. changes in support phase duration and leg movements.