Activated Protein Synthesis and Suppressed Protein Breakdown Signaling in Skeletal Muscle of Critically Ill Patients (original) (raw)

Signals for Muscular Protein Turnover and Insulin Resistance in Critically Ill Patients: A Narrative Review

Nutrients

Sarcopenia in critically ill patients is a highly prevalent comorbidity. It is associated with a higher mortality rate, length of mechanical ventilation, and probability of being sent to a nursing home after the Intensive Care Unit (ICU). Despite the number of calories and proteins delivered, there is a complex network of signals of hormones and cytokines that affect muscle metabolism and its protein synthesis and breakdown in critically ill and chronic patients. To date, it is known that a higher number of proteins decreases mortality, but the exact amount needs to be clarified. This complex network of signals affects protein synthesis and breakdown. Some hormones regulate metabolism, such as insulin, insulin growth factor glucocorticoids, and growth hormone, whose secretion is affected by feeding states and inflammation. In addition, cytokines are involved, such as TNF-alpha and HIF-1. These hormones and cytokines have common pathways that activate muscle breakdown effectors, such...

Mechanisms for Muscle Health in the Critically Ill Patient

Critical care nursing quarterly, 2013

Human skeletal muscles are continually remodeled to match the function required of them. Diameter, strength, and vascular supply are altered when a muscle group experiences contraction and resistance. The purpose of this article is to describe selected muscle signaling pathways that contribute to muscle remodeling. Multiple factors affect the cellular and molecular remodeling of muscles and at least 2 of them-exercise and protein/calorie delivery-are under the direct care of intensive care unit (ICU) clinicians. Activating signaling pathways may promote preservation of muscle mass and function. Interventions to prevent muscle atrophy have potential to reduce ICU-acquired weakness and positively affect quality of life in survivors after ICU hospitalization. Exploring information generated by genomic and proteomic investigations about muscle signaling pathways can help the ICU clinician evaluate the benefits and risks of interventions to maintain muscle health early in critical illness.

Insulin fails to stimulate muscle protein synthesis in sepsis despite unimpaired signaling to 4E-BP1 and S6K1

American Journal of Physiology-Endocrinology and Metabolism, 2001

Induction of sepsis in rats causes an inhibition of protein synthesis in skeletal muscle that is resistant to the stimulatory actions of insulin. To gain a better understanding of the underlying reason for this lack of response, the present study was undertaken to investigate sepsis-induced alterations in insulin signaling to regulatory components of mRNA translation. Experiments were performed in perfused hindlimb preparations from rats 5 days after induction of a septic abscess. Sepsis resulted in a 50% reduction in protein synthesis in the gastrocnemius. Protein synthesis in muscles from septic rats, but not controls, was unresponsive to stimulation by insulin. The insulin-induced hyperphosphorylation response of the translation repressor protein 4E-binding protein 1 (4E-BP1) and of the 70-kDa S6 kinase (S6K1) (1), two targets of insulin action on mRNA translation, was unimpaired in gastrocnemius of septic rats. Hyperphosphorylation of 4E-BP1 in response to insulin resulted in it...

Metabolic phenotype of skeletal muscle in early critical illness

Thorax, 2018

To characterise the sketetal muscle metabolic phenotype during early critical illness. Vastus lateralis muscle biopsies and serum samples (days 1 and 7) were obtained from 63 intensive care patients (59% male, 54.7±18.0 years, Acute Physiology and Chronic Health Evaluation II score 23.5±6.5). From day 1 to 7, there was a reduction in mitochondrial beta-oxidation enzyme concentrations, mitochondrial biogenesis markers (PGC1α messenger mRNA expression (-27.4CN (95% CI -123.9 to 14.3); n=23; p=0.025) and mitochondrial DNA copy number (-1859CN (IQR -5557-1325); n=35; p=0.032). Intramuscular ATP content was reduced compared tocompared with controls on day 1 (17.7mmol/kg /dry weight (dw) (95% CI 15.3 to 20.0) vs. 21.7 mmol/kg /dw (95% CI 20.4 to 22.9); p<0.001) and decreased over 7 days (-4.8 mmol/kg dw (IQR -8.0-1.2); n=33; p=0.001). In addition, the ratio of phosphorylated:total AMP-K (the bioenergetic sensor) increased (0.52 (IQR -0.09-2.6); n=31; p<0.001). There was an increase ...

Electrical stimulated GLUT4 signalling attenuates critical illness‐associated muscle wasting

Journal of Cachexia, Sarcopenia and Muscle, 2022

Background Critical illness myopathy (CIM) is a debilitating condition characterized by the preferential loss of the motor protein myosin. CIM is a by-product of critical care, attributed to impaired recovery, long-term complications, and mortality. CIM pathophysiology is complex, heterogeneous and remains incompletely understood; however, loss of mechanical stimuli contributes to critical illness-associated muscle atrophy and weakness. Passive mechanical loading and electrical stimulation (ES) therapies augment muscle mass and function. While having beneficial outcomes, the mechanistic underpinning of these therapies is less known. Therefore, here we aimed to assess the mechanism by which chronic supramaximal ES ameliorates CIM in a unique experimental rat model of critical care. Methods Rats were subjected to 8 days of critical care conditions entailing deep sedation, controlled mechanical ventilation, and immobilization with and without direct soleus ES. Muscle size and function were assessed at the single cell level. RNAseq and western blotting were employed to understand the mechanisms driving ES muscle outcomes in CIM. Results Following 8 days of controlled mechanical ventilation and immobilization, soleus muscle mass, myosin : actin ratio, and single muscle fibre maximum force normalized to cross-sectional area (CSA; specific force) were reduced by 40-50% (P < 0.0001). ES significantly reduced the loss of soleus muscle fibre CSA and myosin : actin ratio by approximately 30% (P < 0.05) yet failed to effect specific force. RNAseq pathway analysis revealed downregulation of insulin signalling in the soleus muscle following critical care, and GLUT4 trafficking was reduced by 55% leading to an 85% reduction of muscle glycogen content (P < 0.01). ES promoted phosphofructokinase and insulin signalling pathways to control levels (P < 0.05), consistent with the maintenance of GLUT4 translocation and glycogen levels. AMPK, but not AKT, signalling pathway was stimulated following ES, where the downstream target TBC1D4 increased 3 logFC (P = 0.029) and AMPK-specific P-TBC1D4 levels were increased approximately twofold (P = 0.06). Reduction of muscle protein degradation rather than increased synthesis promoted soleus CSA, as ES reduced E3 ubiquitin proteins, Atrogin-1 (P = 0.006) and MuRF1 (P = 0.08) by approximately 50%, downstream of AMPK-FoxO3. Conclusions ES maintained GLUT4 translocation through increased AMPK-TBC1D4 signalling leading to improved muscle glucose homeostasis. Soleus CSA and myosin content was promoted through reduced protein degradation via AMPK-FoxO3 E3 ligases, Atrogin-1 and MuRF1. These results demonstrate chronic supramaximal ES reduces critical care associated muscle wasting, preserved glucose signalling, and reduced muscle protein degradation in CIM.

Muscle glycogen metabolism is rapidly dysregulated in critical illness and associates with ICU acquired weakness

The association of perturbed skeletal muscle metabolism with ICU acquired weakness (ICUAW) is not clear. We characterised temporal changes in skeletal muscle mitochondrial function, ATP concentration, and substrate utilisation during and up to 6 months post ICU admission in critically ill patients enrolled into a randomised controlled trial of functional electrical stimulation-assisted cycle ergometry (FESCE) vs. standard care. To delineate mechanisms underpinning ICUAW we also compared the expression of genes involved in skeletal muscle mitochondrial function and substrate utilisation in the critically ill patients to control groups that had either undergone elective surgery or leg immobilisation (i.e. muscle disuse). The main finding was that mitochondrial function did not change 7 days or 6 months after ICU admission and was not impacted by FESCE. However, a 20% reduction in muscle ATP content by day 7 of ICU stay persisted after 6 months and was associated with ICUAW. Moreover, ...

A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle

The Journal of Physiology, 2008

Sepsis causes muscle atrophy and insulin resistance, but the underlying mechanisms are unclear. Therefore, the present study examined the effects of lipopolysaccharide (LPS)-induced endotoxaemia on the expression of Akt, Forkhead Box O (FOXO) and its downstream targets, to identify any associations between changes in FOXO-dependent processes influencing muscle atrophy and insulin resistance during sepsis. Chronically instrumented male Sprague-Dawley rats received a continuous intravenous infusion of LPS (15 μg kg −1 h −1 ) or saline for 24 h at 0.4 ml h −1 . Animals were terminally anaesthetized and the extensor digitorum longus muscles from both hindlimbs were removed and snap-frozen. Measurements were made of mRNA and protein expression of selected signalling molecules associated with pathways regulating protein synthesis and degradation and carbohydrate metabolism. LPS infusion induced increases in muscle tumour necrosis factor-α (8.9-fold, P < 0.001) and interleukin-6 (8.4-fold, P < 0.01), paralleled by reduced insulin receptor substrate-1 mRNA expression (−0.7-fold, P < 0.01), and decreased Akt1 protein and cytosolic FOXO1 and FOXO3 phosphorylation. These changes were accompanied by significant increases in muscle atrophy F-box mRNA (5.5-fold, P < 0.001) and protein (2-fold, P < 0.05) expression, and pyruvate dehydrogenase kinase 4 mRNA (15-fold, P < 0.001) and protein (1.6-fold, P < 0.05) expression. There was a 29% reduction in the muscle protein : DNA ratio, a 56% reduction in pyruvate dehydrogenase complex (PDC) activity (P < 0.05), and increased glycogen degradation and lactate accumulation. The findings of this study suggest a potential role for Akt/FOXO in the simultaneous impairment of carbohydrate oxidation, at the level of PDC, and up-regulation of muscle protein degradation, in LPS-induced endotoxaemia.

Local insulin-like growth factor I prevents sepsis-induced muscle atrophy

2009

The present study tests the hypotheses that local bioavailability of insulin-like growth factor I (IGF-I) is capable of regulating muscle protein balance and that muscle-directed IGF-I can selectively maintain muscle mass during bacterial infection. Initial studies in C57BL/6 mice demonstrated that increasing or decreasing bioavailable IGF-I within muscle by local administration of either Leu 24 Ala 31 IGF-I or IGF binding protein 1, respectively, produced proportional changes in surrogate markers (eg, phosphorylation of 4E-BP1 and S6K1) of protein synthesis. We next examined the ability of a sustained local administration of IGF-I to prevent sepsis-induced muscle atrophy over a 5-day period. At the time of cecal ligation and puncture or sham surgery, mice had a time-release pellet containing IGF-I implanted next to the gastrocnemius and a placebo pellet placed in the contralateral limb. Data indicated that IGF-I released locally only affected the adjacent muscle and was not released into the circulation. Gastrocnemius from septic mice containing the placebo pellet was atrophied and had a reduced IGF-I protein content. In contrast, locally directed IGF-I increased IGF-I protein within adjacent muscle to basal control levels. This change was associated with a proportional increase in muscle weight and protein, as well as increased phosphorylation of 4E-BP1 and the redistribution of eIF4E from the inactive eIF4E•4EBP1 complex to the active eIF4E•eIF4G complex. Local IGF-I also prevented the sepsisinduced increase in atrogin-1 messenger RNA in the exposed muscle. Finally, local IGF-I prevented the sepsis-induced increase in muscle interleukin-6 messenger RNA. Thus, muscle-directed IGF-I attenuates the sepsis-induced atrophic response apparently by increasing muscle protein synthesis and potentially decreasing proteolysis. Collectively, our data suggest that agents that increase the bioavailability of IGF-I within muscle per se might be effective in ameliorating the sepsis-induced loss of muscle mass without having undesirable effects on metabolic processes in distant organs.

Acute Skeletal Muscle Wasting in Critical Illness

JAMA, 2013

IMPORTANCE Survivors of critical illness demonstrate skeletal muscle wasting with associated functional impairment. OBJECTIVE To perform a comprehensive prospective characterization of skeletal muscle wasting, defining the pathogenic roles of altered protein synthesis and breakdown. DESIGN, SETTING, AND PARTICIPANTS Sixty-three critically ill patients (59% male; mean age: 54.7 years [95% CI, 50.0-59.6 years]) with an Acute Physiology and Chronic Health Evaluation II score of 23.5 (95% CI, 21.9-25.2) were prospectively recruited within 24 hours following intensive care unit (ICU) admission from August 2009 to April 2011 at a university teaching and a community hospital in England. Patients were recruited if older than 18 years and were anticipated to be intubated for longer than 48 hours, to spend more than 7 days in critical care, and to survive ICU stay.