Thalamocortical synaptic connections: efficacy, modulation, inhibition and plasticity (original) (raw)

Adult thalamocortical transmission involves both NMDA and non-NMDA receptors

Journal of neurophysiology, 1996

AND CONCLUSIONS 1. The involvement of N-methyl-D-aspartate (NMDA) receptors in thalamocortical transmission has been demonstrated in early postnatal development, but could not be determined so far in adult animals. We used thalamocortical slices from brains of mature mice to examine whether NMDA receptors exist in adult thalamocortical synapses, and what is their potential contribution to thalamocortical synaptic responses.

Synaptic patterns of thalamocortical afferents in mouse barrels at postnatal day 11

The Journal of Comparative Neurology, 2002

This study focuses on the synaptic output patterns of thalamocortical axons in mouse barrel cortex at postnatal day (P) 11. Axons were labeled by biotinylated dextran amine transported anterogradely following injection in vivo into the ventrobasal thalamus. Labeled axons in the posteromedial barrel subfield were examined by light and electron microscopy and then reconstructed in three dimensions to assess the spatial distribution of their synapses. Thalamocortical axons form asymmetrical synapses, both at varicosities and along cylindrical portions of the axons; usually, only one synapse occurs per site, contrasting with the case in the adult, in which multiple synapses are typical. At P11, varicosities without synapses are common. As in adult barrels, approximately 80% of synapses formed by thalamocortical axons are with dendritic spines; 20% are with dendritic shafts. The similarity in the distribution of thalamocortical synapses onto spines vs. dendrites in developing and mature barrels indicates that adult synaptic patterns already are specified at a very early stage of thalamocortical synaptogenesis.

Developmental Changes in AMPA and Kainate Receptor-Mediated Quantal Transmission at Thalamocortical Synapses in the Barrel Cortex

Journal of Neuroscience, 2005

During the first week of life, there is a shift from kainate to AMPA receptor-mediated thalamocortical transmission in layer IV barrel cortex. However, the mechanisms underlying this change and the differential properties of AMPA and kainate receptor-mediated transmission remain essentially unexplored. To investigate this, we studied the quantal properties of AMPA and kainate receptor-mediated transmission using strontium-evoked miniature EPSCs. AMPA and kainate receptor-mediated transmission exhibited very different quantal properties but were never coactivated by a single quantum of transmitter, indicating complete segregation to different synapses within the thalamocortical input. Nonstationary fluctuation analysis showed that synaptic AMPA receptors exhibited a range of singlechannel conductance (␥) and a strong negative correlation between ␥ and functional channel number, indicating that these two parameters are reciprocally regulated at thalamocortical synapses. We obtained the first estimate of ␥ for synaptic kainate receptors (Ͻ2 pS), and this primarily accounted for the small quantal size of kainate receptor-mediated transmission. Developmentally, the quantal contribution to transmission of AMPA receptors increased and that of kainate receptors decreased. No changes in AMPA or kainate quantal amplitude or in AMPA receptor ␥ were observed, demonstrating that the developmental change was attributable to a decrease in the number of kainate synapses and an increase in the number of AMPA synapses contributing to transmission. Therefore, we demonstrate fundamental differences in the quantal properties for these two types of synapse. Thus, the developmental switch in transmission will dramatically alter information transfer at thalamocortical inputs to layer IV.

Nurturing the cortexʼs thalamic nature

Current Opinion in Neurology, 2014

Purpose of review Neocortical and thalamic interactions are necessary for the execution of complex sensory-motor tasks and associated cognitive processes. Investigation of thalamocortical circuit development is therefore critical to understand developmental disorders involving abnormal cortical function. Here, we review recent advances in our understanding of thalamus-dependent cortical patterning and cortical neuron differentiation. Recent findings Although the principles of cortical map patterning are increasingly understood, the extent to which thalamocortical inputs contribute to cortical neuron differentiation is still unclear. The recent development of genetic models allowing cell-type-specific dissection of cortical input pathways has shed light on some of the input-dependent and activity-dependent processes occurring during cortical development, which are discussed here. Summary These recent studies have revealed interwoven links between thalamic and cortical neurons, in which cell intrinsic differentiation programs are tightly regulated by synaptic input during a prolonged period of development. Challenges in the years to come will be to identify the mechanisms underlying the reciprocal interactions between intrinsic and extrinsic differentiation programs, and their contribution to neurodevelopmental disorders and neuropsychiatric disorders at large.

Alterations in the properties of neonatal thalamocortical synapses with time in in vitro slices

PLOS ONE, 2017

New synapses are constantly being generated and lost in the living brain with only a subset of these being stabilized to form an enduring component of neuronal circuitry. The properties of synaptic transmission have primarily been established in a variety of in vitro neuronal preparations. It is not clear, however, if newly-formed and persistent synapses contribute to the results of these studies consistently throughout the lifespan of these preparations. In neonatal somatosensory, barrel, cortex we have previously hypothesized that a population of thalamocortical synapses displaying unusually slow kinetics represent newly-formed, default-transient synapses. This clear phenotype would provide an ideal tool to investigate if such newly formed synapses consistently contribute to synaptic transmission throughout a normal experimental protocol. We show that the proportion of synapses recorded in vitro displaying slow kinetics decreases with time after brain slice preparation. However, slow synapses persist in vitro in the presence of either minocycline, an inhibitor of microglia-mediated synapse elimination, or the TrkB agonist 7,8-dihydroxyflavone a promoter of synapse formation. These findings show that the observed properties of synaptic transmission may systematically change with time in vitro in a standard brain slice preparation.

Development of functional thalamocortical synapses studied with current source-density analysis in whole forebrain slices in the rat

2003

We analysed the laminar distribution of transmembrane currents from embryonic (E) day 17 until adulthood after selective thalamic stimulation in slices of rat forebrain to study the development of functional thalamocortical and cortico-cortical connections. At E18 to birth a short-latency current sink was observed in the subplate and layer 6, which was decreased, but not fully abolished in a cobalt containing solution or after the application of glutamate receptor blockers (APV and DNQX). This indicated that embryonic thalamic axons were capable of conducting action potentials to the cortex and some of them had already formed functional synapses there. Between birth and P3, when thalamic axons were completing their upward growth, a sink gradually appeared more superficially in the dense cortical plate and synchronously, a current source aroused in layer 5. Both sinks and sources completely disappeared after blocking synaptic transmission. The adult-like distribution of CSDs became apparent after P7. The component in layer 6 cannot be blocked completely after this age suggesting antidromic activation. This study demonstrated that cells of the lowest layers of the cortex received functional thalamic input before birth and that thalamocortical axons formed synapses with more superficial cells as they grew into the cortical plate.

Contrasting the Functional Properties of GABAergic Axon Terminals with Single and Multiple Synapses in the Thalamus

The Journal of Neuroscience, 2008

Diverse sources of GABAergic inhibition are a major feature of cortical networks, but distinct inhibitory input systems have not been systematically characterized in the thalamus. Here, we contrasted the properties of two independent GABAergic pathways in the posterior thalamic nucleus of rat, one input from the reticular thalamic nucleus (nRT), and one “extrareticular” input from the anterior pretectal nucleus (APT). The vast majority of nRT-thalamic terminals formed single synapses per postsynaptic target and innervated thin distal dendrites of relay cells. In contrast, single APT-thalamic terminals formed synaptic contacts exclusively via multiple, closely spaced synapses on thick relay cell dendrites. Quantal analysis demonstrated that the two inputs displayed comparable quantal amplitudes, release probabilities, and multiple release sites. The morphological and physiological data together indicated multiple, single-site contacts for nRT and multisite contacts for APT axons. The...

A new interpretation of thalamocortical circuitry

Philosophical Transactions of the Royal Society B: Biological Sciences, 2002

Almost all the information that is needed to specify thalamocortical and neocortical wiring derives from patterned electrical activity induced by the environment. Wiring accuracy must be limited by the anatomical specificity of the cascade of events triggered by neural activity and culminating in synaptogenesis. We present a simple model of learning in the presence of plasticity errors. One way to achieve learning specificity is to build better synapses. We discuss an alternative, circuit–based, approach that only allows plasticity at connections that support highly selective correlations. This circuit resembles some of the more puzzling aspects of thalamocorticothalamic circuitry.