Haloarchaeal proteases and proteolytic systems (original) (raw)

Proteolysis at the Archaeal Membrane: Advances on the Biological Function and Natural Targets of Membrane-Localized Proteases in Haloferax volcanii

Frontiers in Microbiology

Proteolysis plays a fundamental role in many processes that occur within the cellular membrane including protein quality control, protein export, cell signaling, biogenesis of the cell envelope among others. Archaea are a distinct and physiologically diverse group of prokaryotes found in all kinds of habitats, from the human and plant microbiomes to those with extreme salt concentration, pH and/or temperatures. Thus, these organisms provide an excellent opportunity to extend our current understanding on the biological functions that proteases exert in cell physiology including the adaptation to hostile environments. This revision describes the advances that were made on archaeal membrane proteases with regard to their biological function and potential natural targets focusing on the model haloarchaeon Haloferax volcanii.

Archaeal membrane-associated proteases: insights on Haloferax volcanii and other haloarchaea

Frontiers in Microbiology, 2015

The function of membrane proteases range from general housekeeping to regulation of cellular processes. Although the biological role of these enzymes in archaea is poorly understood, some of them are implicated in the biogenesis of the archaeal cell envelope and surface structures. The membrane-bound ATP-dependent Lon protease is essential for cell viability and affects membrane carotenoid content in Haloferax volcanii. At least two different proteases are needed in this archaeon to accomplish the posttranslational modifications of the S-layer glycoprotein. The rhomboid protease RhoII is involved in the N-glycosylation of the S-layer protein with a sulfoquinovose-containing oligosaccharide while archaeosortase ArtA mediates the proteolytic processing coupled-lipid modification of this glycoprotein facilitating its attachment to the archaeal cell surface. Interestingly, two different signal peptidase I homologs exist in H. volcanii, Sec11a and Sec11b, which likely play distinct physiological roles. Type IV prepilin peptidase PibD processes flagellin/pilin precursors, being essential for the biogenesis and function of the archaellum and other cell surface structures in H. volcanii.

Data in support of global role of the membrane protease LonB in Archaea: Potential protease targets revealed by quantitative proteome analysis of a lonB mutant in Haloferax volcanii

Data in Brief, 2015

This data article provides information in support of the research article "Global role of the membrane protease LonB in Archaea: Potential protease targets revealed by quantitative proteome analysis of a lonB mutant in Haloferax volcanii" [Cerletti et al. J Proteom. 2015, In press].The proteome composition of a wt and a LonB protease mutant strain (suboptimal expression) in the archaeon Haloferax volcanii was assessed by a quantitative shotgun proteomic approach. Membrane and cytosol fractions of H. volcanii strains were examined at two different growth stages (exponential and stationary phase). Data is supplied in the present article. This study represents the first proteome examination of a Lon-deficient cell of the Archaea Domain.

Extracellular proteases from halophiles: diversity and application challenges

Applied Microbioloy and Biotechnology, 2023

Halophilic extracellular proteases offer promising application in various fields. Information on these prominent proteins including the synthesizing organisms, biochemical properties, domain organisation, purification, and application challenges has never been covered in recent reviews. Although extracellular proteases from bacteria pioneered the study of proteases in halophiles, progress is being made in proteases from halophilic archaea. Recent advances in extracellular proteases from archaea revealed that archaeal proteases are more robust and applicable. Extracellular proteases are composed of domains that determine their mechanisms of action. The intriguing domain structure of halophilic extracellular proteases consists of N-terminal domain, catalytic domain, and C-terminal extension. The role of C-terminal domains varies among different organisms. A high diversity of C-terminal domains would endow the proteases with diverse functions. With the development of genomics, culture-independent methods involving heterologous expression, affinity chromatography, and in vitro refolding are deployed with few challenges on purification and presenting novel research opportunities. Halophilic extracellular proteases have demonstrated remarkable potentials in industries such as detergent, leather, peptide synthesis, and biodegradation, with desirable properties and ability to withstand harsh industrial processes. Key points • Halophilic extracellular proteases have robust properties suitable for applications. • A high diversity of C-terminal domains may endow proteases with diverse properties. • Novel protease extraction methods present novel application opportunities.

Global role of the membrane protease LonB in Archaea: Potential protease targets revealed by quantitative proteome analysis of a lonB mutant in Haloferax volcanii

Journal of proteomics, 2015

The membrane-associated LonB protease is essential for viability in Haloferax volcanii, however, the cellular processes affected by this protease in archaea are unknown. In this study, the impact of a lon conditional mutation (down-regulation) on H. volcanii physiology was examined by comparing proteomes of parental and mutant cells using shotgun proteomics. A total of 1778 proteins were identified (44% of H. volcanii predicted proteome) and 142 changed significantly in amount (≥2 fold). Of these, 66 were augmented in response to Lon deficiency suggesting they could be Lon substrates. The "Lon subproteome" included soluble and predicted membrane proteins expected to participate in diverse cellular processes. The dramatic stabilization of phytoene synthase (57 fold) in concert with overpigmentation of lon mutant cells suggests that Lon controls carotenogenesis in H. volcanii. Several hypothetical proteins, which may reveal novel functions and/or be involved in adaptation to...

Halophilic 20S proteasomes of the archaeon Haloferax volcanii: purification, characterization, and gene sequence analysis

Journal of bacteriology, 1999

A 20S proteasome, composed of alpha(1) and beta subunits arranged in a barrel-shaped structure of four stacked rings, was purified from a halophilic archaeon Haloferax volcanii. The predominant peptide-hydrolyzing activity of the 600-kDa alpha(1)beta-proteasome on synthetic substrates was cleavage carboxyl to hydrophobic residues (chymotrypsin-like [CL] activity) and was optimal at 2 M NaCl, pH 7.7 to 9.5, and 75 degrees C. The alpha(1)beta-proteasome also hydrolyzed insulin B-chain protein. Removal of NaCl inactivated the CL activity of the alpha(1)beta-proteasome and dissociated the complex into monomers. Rapid equilibration of the monomers into buffer containing 2 M NaCl facilitated their reassociation into fully active alpha(1)beta-proteasomes of 600 kDa. However, long-term incubation of the halophilic proteasome in the absence of salt resulted in hydrolysis and irreversible inactivation of the enzyme. Thus, the isolated proteasome has unusual salt requirements which distinguish...

The Lon protease from the haloalkaliphilic archaeon Natrialba magadii is transcriptionally linked to a cluster of putative membrane proteases and displays DNA-binding activity

Microbiological Research, 2011

The ATP-dependent Lon protease is universally distributed in bacteria, eukaryotic organelles and archaea. In comparison with bacterial and eukaryal Lon proteases, the biology of the archaeal Lon has been studied to a limited extent. In this study, the gene encoding the Lon protease of the alkaliphilic haloarchaeon Natrialba magadii (Nmlon) was cloned and sequenced, and the genetic organization of Nmlon was examined at the transcriptional level. Nmlon encodes a 84 kDa polypeptide with a pI of 4.42 which contains the ATPase, protease and membrane targeting domains of the archaeal-type LonB proteases. Nmlon is part of an operon that encodes membrane proteases and it is transcribed as a polycistronic mRNA in N. magadii cells at different growth stages. Accordingly, NmLon was detected in cell membranes of N. magadii throughout growth by Western blot analysis using specific anti-NmLon antibodies. Interestingly, in electrophoretic mobility shift assays, purified NmLon bound double stranded as well as single stranded DNA in the presence of elevated salt concentrations. This finding shows that DNA-binding is conserved in the LonA and LonB subfamilies and suggests that Lon-DNA interaction may be relevant for its function in haloarchaea.

Proteasomal Components Required for Cell Growth and Stress Responses in the Haloarchaeon Haloferax volcanii

Journal of Bacteriology, 2008

Little is known regarding the biological roles of archaeal proteases. The haloarchaeon Haloferax volcanii is an ideal model for understanding these enzymes, as it is one of few archaea with an established genetic system. In this report, a series of H. volcanii mutant strains with markerless and/or conditional knockouts in each known proteasome gene was systematically generated and characterized. This included single and double knockouts of genes encoding the 20S core α1 ( psmA ), β ( psmB ), and α2 ( psmC ) subunits as well as genes ( panA and panB ) encoding proteasome-activating nucleotidase (PAN) proteins closely related to the regulatory particle triple-A ATPases (Rpt) of eukaryotic 26S proteasomes. Our results demonstrate that 20S proteasomes are required for growth. Although synthesis of 20S proteasomes containing either α1 or α2 could be separately abolished via gene knockout with little to no impact on growth, conditional depletion of either β alone or α1 and α2 together ren...

Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis

Journal of Industrial Microbiology & Biotechnology, 2009

The production of a protease was investigated under conditions of high salinity by the moderately halophilic bacterium Halobacillus karajensis strain MA-2 in a basal medium containing peptone, beef extract, maltose and NaCl when the culture reached the stationary growth phase. EVect of various temperatures, initial pH, salt and diVerent nutrient sources on protease production revealed that the maximum secretion occurred at 34°C, pH 8.0-8.5, and in the presence of gelatin. Replacement of NaCl by various concentrations of sodium nitrate in the basal medium also increased the protease production. The secreted protease was puriWed 24-fold with 68% recovery by a simple approach including a combination of acetone precipitation and Q-Sepharose ion exchange chromatography. The enzyme revealed a monomeric structure with a relative molecular mass of 36 kDa by running on SDS-PAGE. Maximum caseinolytic activity of the enzyme was observed at 50°C, pH 9.0 and 0.5 M NaCl, although at higher salinities (up to 3 M) activity still remained. The maximum enzyme activity was obtained at a broad pH range of 8.0-10.0, with 55 and 50% activity remaining at pH 6 and 11, respectively. Moreover, the enzyme activity was strongly inhibited by phenylmethylsulfonyl Xuoride (PMSF), Pefabloc SC and EDTA; indicating that it probably belongs to the subclass of serine metalloproteases. These Wndings suggest that the protease secreted by Halobacillus karajensis has a potential for biotechnological applications from its haloalkaline properties point of view.

Stress regulation of the PAN-proteasome system in the extreme halophilic archaeon Halobacterium

Extremophiles : life under extreme conditions, 2012

In Archaea, the importance of the proteasome system for basic biological processes is only poorly understood. Proteasomes were partially purified from Halobacterium by native gradient density ultracentrifugation. The peptidase activity profiles showed that the 20S proteasome accumulation is altered depending on the physiological state of the cells. The amount of active 20S particles increases in Halobacterium cells as a response to thermal and low salt stresses. In the same conditions, Northern experiments showed a positive transcriptional regulation of the alpha and beta proteasome subunits as well as of the two proteasome regulatory ATPases, PANA and PANB. Co-immunoprecipitation experiments demonstrated the existence of a physical interaction between the two Proteasome Activating Nucleotidase (PAN) proteins in cell extracts. Thus, a direct regulation occurs on the PAN–proteasome components to adjust the protein degradation activity to growth and environmental constraints. These results also indicate that, in extreme halophiles, proteasome mediated proteolysis is an important aspect of low salt stress response. The tri-peptide vinyl sulfone inhibitor NLVS was used in cell cultures to study the in vivo function of proteasome in Halobacterium. The chemical inhibition of proteasomes was measured in the cellular extracts. It has no effect on cell growth and mortality under normal growth conditions as well as under heat shock conditions. These results suggest that the PAN activators or other proteases compensate for loss of proteasome activity in stress conditions.