Susceptibility of transgene loci to homology-dependent gene silencing (original) (raw)

Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes

MGG Molecular & General Genetics, 1994

Previous work has shown that two homologous, unlinked transgene loci can interact in plant nuclei, leading to non-reciprocal trans-inactivation and methylation of genes at one locus. Here, we report the structure and methylation of different transgene loci that contain the same construct but are variably able to inactivate and methylate a partially homologous, unlinked target locus. Silencing loci comprised multiple, methylated copies of the transgene construct, whereas a non-silencing locus contained a single, unmethylated copy. The correspondence between strength of silencing activity and copy number/degree of methylation was further demonstrated by producing novel alleles of a strong silencing locus: reducing the transgene copy number and methylation within this silencing locus decreased its ability to inactivate the target locus. The strong silencing locus, which was located close to a telomere, trans-inactivated various structural variants of the original target construct, regardless of their location in the genome. This suggests that the silencing locus can scan the entire genome for homologous regions, a process possibly aided by its telomeric location. Our data support the idea that epistatic trans-inactivation of unlinked, homologous transgenes in plants results from a pre-existing epigenetic difference between transgene loci, which is subsequently equalized by "epigene conversion" involving DNA-DNA pairing.

Transgenerational maintenance of transgene body CG but not CHG and CHH methylation

Epigenetics, 2012

In plants, RNA-directed DNA methylation (RdDM) can target both transgene promoters and coding regions/gene bodies. RdDM leads to methylation of cytosines in all sequence contexts: CG, CHG and CHH. Upon segregation of the RdDM trigger, at least CG methylation can be maintained at promoter regions in the progeny. So far, it is not clear whether coding region methylation can be also maintained. We showed that the body of Potato spindle tuber viroid (PSTVd) transgene constructs became densely de novo methylated at CG, CHG and CHH sites upon PSTVd infection. In this study, we demonstrate that in viroid-free progeny plants, asymmetric CHH and CHG methylation was completely lost. However, symmetric CG methylation was stably maintained for at least two generations. Importantly, the presence of transgene body methylation did not lead to an increase of dimethylation of histone H3 lysine 9 or a decrease of acetylation of H3. Our data supports the view that CG methylation can be maintained not only in promoters but also in the body of transgenes. They further suggest that maintenance of methylation may occur independently of tested chromatin modifications.

Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event

The Plant Journal, 2008

We have studied the inheritance of the epigenetic state of tobacco transgenes whose expression was posttranscriptionally silenced by an invertedly repeated silencer locus. We show that, in hybrids, the coding region of the target neomycin phosphotransferase (nptII) gene was almost exclusively methylated at CG configurations, and dense non-CG methylation occurred in the 3¢ untranslated region. Homologous sequences in the silencer locus were heavily methylated at both CG and non-CG motifs. After segregation of the silencer locus, the CG methylation but not the non-CG methylation of the target genes was transmitted to the progeny. In the segregants, we observed an overall increase of CG methylation in the target genes, associated with a re-distribution from the 3¢ end of the coding region towards the middle. This pattern was inherited with some fluctuation for at least two additional generations in the absence of a detectable T-DNA-derived small RNA fraction. Thus CG methylation is not cleared during meiosis and may be inherited over generations without RNA signals being present. These epi-allelic variants re-expressed the reporter gene immediately after segregation of the trigger, showing that relatively dense CG methylation (approximately 60-80%) imprinted on most of the coding region (>500 bp) did not reduce expression compared with the parental non-methylated locus. We propose that the genic CG methylation seen in euchromatic regions of the genome may originate from ancient post-transcriptional gene silencing events as a result of adventitiously produced methylationdirecting RNA molecules.

Trans Chromosomal Methylation in Arabidopsis hybrids

Proceedings of the National Academy of Sciences, 2012

The heterotic hybrid offspring of Arabidopsis accessions C24 and Landsberg erecta have altered methylomes. Changes occur most frequently at loci where parental methylation levels are different. There are context-specific biases in the nonadditive methylation patterns with m CG generally increased and m CHH decreased relative to the parents. These changes are a result of two main mechanisms, Trans Chromosomal Methylation and Trans Chromosomal deMethylation, where the methylation level of one parental allele alters to resemble that of the other parent. Regions of altered methylation are enriched around genic regions and are often correlated with changes in siRNA levels. We identified examples of genes with altered expression likely to be due to methylation changes and suggest that in crosses between the C24 and Ler accessions, epigenetic controls can be important in the generation of altered transcription levels that may contribute to the increased biomass of the hybrids.

Genetics of homology-dependent gene silencing in Arabidopsis; a role for methylation

The Plant Journal, 1997

Arabidopsis plants were generated, containing additional copies of the chalcone synthase (CHS) gene. Three T2 generation families (A, B and C) were found that showed reduced anthocyanin biosynthesis, consistent with homologydependent gene silencing of CHS. Clonal sectors of tissue showing CHS silencing were seen in the early generations.

The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco

Nucleic Acids Research, 2006

We studied the in trans-silencing capacities of a transgene locus that carried the neomycin phosphotransferase II reporter gene linked to the 35S promoter in an inverted repeat (IR). This transgene locus was originally posttranscriptionally silenced but switched to a transcriptionally silenced epiallele after in vitro tissue culture. Here, we show that both epialleles were strongly methylated in the coding region and IR center. However, by genomic sequencing, we found that the 1.0 kb region around the transcription start site was heavily methylated in symmetrical and non-symmetrical contexts in transcriptionally but not in posttranscriptionally silenced epilallele. Also, the posttranscriptionally silenced epiallele could trans-silence and trans-methylate homologous transgene loci irrespective of their genomic organization. We demonstrate that this in trans-silencing was accompanied by the production of small RNA molecules. On the other hand, the transcriptionally silenced variant could neither trans-silence nor trans-methylate homologous sequences, even after being in the same genetic background for generations and meiotic cycles. Interestingly, 5-aza-2-deoxy-cytidine-induced hypomethylation could partially restore signaling from the transcriptionally silenced epiallele. These results are consistent with the hypothesis that non-transcribed highly methylated IRs are poor silencers of homologous loci at non-allelic positions even across two generations and that transcription of the inverted sequences is essential for their trans-silencing potential. by guest on August 17, 2015 http://nar.oxfordjournals.org/ Downloaded from

The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 Gene Codes for An S-Adenosyl-L-Homocysteine Hydrolase Required for DNA Methylation-Dependent …

The Plant Cell …, 2005

Genes introduced into higher plant genomes can become silent (gene silencing) and/or cause silencing of homologous genes at unlinked sites (homology-dependent gene silencing or HDG silencing). Mutations of the HOMOLOGY-DEPENDENT GENE SILENCING1 (HOG1) locus relieve transcriptional gene silencing and methylation-dependent HDG silencing and result in genome-wide demethylation. The hog1 mutant plants also grow slowly and have low fertility and reduced seed germination. Three independent mutants of HOG1 were each found to have point mutations at the 39 end of a gene coding for S-adenosyl-L-homocysteine (SAH) hydrolase, and hog1-1 plants show reduced SAH hydrolase activity. A transposon (hog1-4) and a T-DNA tag (hog1-5) in the HOG1 gene each behaved as zygotic embryo lethal mutants and could not be made homozygous. The results suggest that the homozygous hog1 point mutants are leaky and result in genome demethylation and poor growth and that homozygous insertion mutations result in zygotic lethality. Complementation of the hog1-1 point mutation with a T-DNA containing the gene coding for SAH hydrolase restored gene silencing, HDG silencing, DNA methylation, fast growth, and normal seed viability. The same T-DNA also complemented the zygotic embryo lethal phenotype of the hog1-4 tagged mutant. A model relating the HOG1 gene, DNA methylation, and methylation-dependent HDG silencing is presented.

The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 Gene Codes for an S-Adenosyl-L-Homocysteine Hydrolase Required for DNA Methylation-Dependent Gene Silencing

THE PLANT CELL ONLINE, 2005

Genes introduced into higher plant genomes can become silent (gene silencing) and/or cause silencing of homologous genes at unlinked sites (homology-dependent gene silencing or HDG silencing). Mutations of the HOMOLOGY-DEPENDENT GENE SILENCING1 (HOG1) locus relieve transcriptional gene silencing and methylation-dependent HDG silencing and result in genome-wide demethylation. The hog1 mutant plants also grow slowly and have low fertility and reduced seed germination. Three independent mutants of HOG1 were each found to have point mutations at the 39 end of a gene coding for S-adenosyl-L-homocysteine (SAH) hydrolase, and hog1-1 plants show reduced SAH hydrolase activity. A transposon (hog1-4) and a T-DNA tag (hog1-5) in the HOG1 gene each behaved as zygotic embryo lethal mutants and could not be made homozygous. The results suggest that the homozygous hog1 point mutants are leaky and result in genome demethylation and poor growth and that homozygous insertion mutations result in zygotic lethality. Complementation of the hog1-1 point mutation with a T-DNA containing the gene coding for SAH hydrolase restored gene silencing, HDG silencing, DNA methylation, fast growth, and normal seed viability. The same T-DNA also complemented the zygotic embryo lethal phenotype of the hog1-4 tagged mutant. A model relating the HOG1 gene, DNA methylation, and methylation-dependent HDG silencing is presented.

Epigenetic Switch from Posttranscriptional to Transcriptional Silencing Is Correlated with Promoter Hypermethylation

Plant Physiology, 2003

Changes in the distribution of methylcytosine residues along a transgene locus of tobacco (Nicotiana tabacum) in relation to the type of gene silencing were studied in parental plant leaves, calli, and regenerated plants derived thereof. Parental-silenced HeLo1 (hemizygous for locus 1) plants show posttranscriptional silencing of the residing nptII (neomycin phosphotransferase II) transgene and cytosine methylation restricted to the 3′ end and center part of the transcribed region. Here, we report that with an increasing number of cell cycles, DNA methylation changes gradually, and methylation is introduced into the promoter during cell culture and more slowly in vegetatively propagated plants. After 24 months of callus in vitro cultivation, an epigenetic variant, designated locus 1E, was obtained in which cytosine methylation of symmetrical (CG and CNG) sites was almost complete within the 5′ end of the nptII-transcribed region and the 35S promoter. Further, methylation of nonsymme...