Regional probabilistic climate forecasts from a multithousand, multimodel ensemble of simulations (original) (raw)
Related papers
Evaluation of the Large EURO‐CORDEX Regional Climate Model Ensemble
Journal of Geophysical Research: Atmospheres, 2021
The use of regional climate model (RCM)‐based projections for providing regional climate information in a research and climate service contexts is currently expanding very fast. This has been possible thanks to a considerable effort in developing comprehensive ensembles of RCM projections, especially for Europe, in the EURO‐CORDEX community (Jacob et al., 2014, 2020). As of end of 2019, EURO‐CORDEX has developed a set of 55 historical and scenario projections (RCP8.5) using 8 driving global climate models (GCMs) and 11 RCMs. This article presents the ensemble including its design. We target the analysis to better characterize the quality of the RCMs by providing an evaluation of these RCM simulations over a number of classical climate variables and extreme and impact‐oriented indices for the period 1981–2010. For the main variables, the model simulations generally agree with observations and reanalyses. However, several systematic biases are found as well, with shared responsibiliti...
Climate Dynamics, 2000
We analyze ensembles (four realizations) of historical and future climate transient experiments carried out with the coupled atmosphere-ocean general circulation model (AOGCM) of the Hadley Centre for Climate Prediction and Research, version HADCM2, with four scenarios of greenhouse gas (GHG) and sulfate forcing. The analysis focuses on the regional scale, and in particular on 21 regions covering all land areas in the World (except Antarctica). We examine seasonally averaged surface air temperature and precipitation for the historical period of 1961–1990 and the future climate period of 2046–2075. Compared to previous AOGCM simulations, the HADCM2 model shows a good performance in reproducing observed regional averages of summer and winter temperature and precipitation. The model, however, does not reproduce well observed interannual variability. We find that the uncertainty in regional climate change predictions associated with the spread of different realizations in an ensemble (i.e. the uncertainty related to the internal model variability) is relatively low for all scenarios and regions. In particular, this uncertainty is lower than the uncertainty due to inter-scenario variability and (by comparison with previous regional analyses of AOGCMs) with inter-model variability. The climate biases and sensitivities found for different realizations of the same ensemble were similar to the corresponding ensemble averages and the averages associated with individual realizations of the same ensemble did not differ from each other at the 5% confidence level in the vast majority of cases. These results indicate that a relatively small number of realizations (3 or 4) is sufficient to characterize an AOGCM transient climate change prediction at the regional scale.