Critical amplitude ratio of the susceptibility in the random-site two-dimensional Ising model (original) (raw)
Abstract
We present a different way of probing the universality class of the site-diluted two-dimensional Ising model. We analyze Monte Carlo data for the magnetic susceptibility, introducing a fitting procedure in the critical region applicable even for a single sample with quenched disorder. This gives us the possibility to fit simultaneously the critical exponent, the critical amplitude, and the sample-dependent pseudocritical temperature. The critical amplitude ratio of the magnetic susceptibility is seen to be independent of the concentration q of the empty sites for all investigated values of q < or =0.25. At the same time the average effective exponent gamma(eff) is found to vary with the concentration q, which may be argued to be due to logarithmic corrections to the power law of the pure system. These corrections are canceled in the susceptibility amplitude ratio as predicted by theory. The central charge of the corresponding field theory was computed and compared well with the t...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (30)
- R. B. Stinchcombe, in Phase Transitions and Crit- ical Phenomena, Vol. 7, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1983)
- W. Selke, L.N. Shchur and A.L. Talapov, in Annual Reviews of Computational Physics, Vol. 1, edited by D. Stauffer (World Scientific, Singapore, 1995)
- A.B. Harris, J.Phys. C: Solid State Phys., 7 (1974) 1671
- Vik.S. Dotsenko and Vl.S. Dotsenko, Sov. Phys. JETP Lett., 33 (1981) 37; Adv. in Physics, 32 (1983) 129
- B.N. Shalaev, Sov. Phys. Solid State 26 (1984) 1811; Phys. Rep. 237 (1994) 129; R. Shankar, Phys. Rev. Lett. 58 (1987) 2466; 61 (1988) 239 0; A.W.W. Ludwig, Phys. Rev. Lett. 61 (1988) 2388; Nucl. Phys. B 330 (1990) 639
- J.-S. Wang, W. Selke, Vl. S. Dotsenko, and V. B. Andre- ichenko, Physica A 164 (1990) 221
- A. Röder, J. Adler, and W. Janke, Physica A 265 (1999) 28
- V.N. Plechko, Phys. Lett. A 239 (1998) 289
- R. M. Ziff, Phys. Rev. Lett. 69 (1992) 2670
- J.-K. Kim and A. Patrascioiu, Phys. Rev. Lett. 72 (1994) 2785; Phys. Rev. B 49 (1994) 15764; J.-K. Kim, Phys. Rev. B 61 (2000) 1246
- S. L. A. de Queiroz, R. B. Stinchcombe, Phys. Rev. B 50 (1994) 9976; G. Mazzeo and R. Kühn, Phys. Rev. E 60 (1999) 3823
- H.-O. Heuer, Phys. Rev. B 45 (1992) 5691; H.G. Balles- teros, L. A. Fernandez, V. Martin-Mayor, A. Munoz Sudupe, G. Parisi, J. J. Ruiz-Lorenzo (Universita di Roma I), J. Phys. A: Math. Gen. 30 (1997) 8379
- W. Selke, L. N. Shchur, O. A. Vasilyev, Physica A 259 (1998) 388
- V. Privman, P.C. Hohenberg, A. Aharony, in Phase Transitions and Critical Phenomena, Vol. 14, edited by C. Domb and J.L. Lebowitz (Academic, New York, 1991)
- T.T. Wu, B.M. McCoy, C.A. Tracy and E. Barouch, Phys. Rev. B 13 (1976) 316
- R.M. Ziff, private communication
- G. Delfino and J. Cardy, Nucl.Phys.B 519 (1998) 551
- G. Delfino, G.T. Barkema, and J.L. Cardy, Nucl. Phys. B 565 (2000) 521
- M. Caselle, R. Tateo and S. Vinti, Nucl.Phys. B 562 (1999) 549
- J. Salas and A.D. Sokal, J. Stat. Phys. 88 (1997) 567
- B. Derrida, B.W. Southern and D. Stauffer, J. Physique 48 (1987) 335
- L.N. Shchur, Comp. Phys. Comm., 121-122, 83 (1999);
- L.N. Shchur, H.W.J. Blöte and J. R. Heringa, Physica A 241 (1997) 579; L.N. Shchur and H.W.J. Blöte, Phys. Rev. E 55 (1997) R4905; R.M. Ziff, Computers in Physics 12 (1998) 385
- D. Stauffer and A. Aharony, Introduction to percolation theory, (Taylor & Francis, London, 1992)
- M.E. Fisher and A.E. Ferdinand, Phys. Rev. Lett. 19 (1967) 169
- U. Wolff, Phys. Rev. Lett. 62 (1988) 361
- X.P. Kong, H. Au-Yang, and J.H.H. Perk, Phys. Lett. A, 116 (1986) 54
- S. Wiseman and E. Domany, Phys. Rev. E 52 (1995) 3469; Phys. Rev. Lett. 81 (1998) 22; Phys. Rev. E 58 (1998) 2938
- V.B. Andreichenko, Vl. S. Dotsenko, W. Selke and J.-S. Wang, Nucl. Phys. B 334 (1990) 531
- N.C. Bartelt, T. L. Einstein, and L.D. Roelofs, Phys. Rev. B 35 (1987) 1776