Centrosome separation: respective role of microtubules and actin filaments (original) (raw)

2002, Biology of the Cell

In mammalian cells, the separation of centrosomes is a prerequisite for bipolar mitotic spindle assembly. We have investigated the respective contribution of the two cytoskeleton components, microtubules and actin filaments, in this process. Distances between centrosomes have been measured during cell cycle progression in Xenopus laevis XL2 cultured cells in the presence or absence of either network. We considered two stages in centrosome separation: the splitting stage, when centrosomes start to move apart (minimum distance of 1 µm), and the elongation stage (from 1 to 7 µm). In interphase, depolymerisation of microtubules by nocodazole significantly inhibited the splitting stage, while the elongation stage was, on the contrary, facilitated. In mitosis, while nocodazole treatment completely blocked spindle assembly, in prophase, we observed that 55% of the centrosomes separated, versus 94% in the control. Upon actin depolymerisation by latrunculin, splitting of the interphase centrosome was blocked, and cells entered mitosis with unseparated centrosomes. Cells compensated for this separation delay by increasing the length of both prophase and prometaphase stages to allow for centrosome separation until a minimal distance was reached. Then the cells passed through anaphase, performing proper chromosome separation, but cytokinesis did not occur, and binuclear cells were formed. Our results clearly show that the actin microfilaments participate in centrosome separation at the G2/M transition and work in synergy with the microtubules to accelerate centrosome separation during mitosis.