Human CD8+ and CD4+ T Cell Memory to Lymphocytic Choriomeningitis Virus Infection (original) (raw)

Abstract

understood. Thus, we analyzed the breadths, magnitudes, and differentiation phenotypes of memory LCMVspecific CD8 ؉ and CD4 ؉ T cells in three human donors displaying a variety of disease outcomes after accidental needle stick injury or exposure to LCMV. Although only a small cohort of donors was analyzed at a single time point postinfection, several interesting observations were made. First, we were able to detect LCMV-specific CD8 ؉ and CD4 ؉ T cell responses directly ex vivo at 4 to 8 years after exposure, demonstrating the longevity of T cell memory in humans. Second, unlike in murine models of LCMV infection, we found that the breadths of memory CD8 ؉ and CD4 ؉ T cell responses were not significantly different from one another. Third, it seemed that the overall CD8 ؉ T cell response was augmented with increasing severity of disease, while the LCMV-specific CD4 ؉ T cell response magnitude was highly variable between the three different donors. Next, we found that LCMV-specific CD8 ؉ T cells in the three donors analyzed seemed to undergo an effector memory differentiation program distinct from that of CD4 ؉ T cells. Finally, the levels of expression of memory, costimulatory, and inhibitory receptors on CD8 ؉ and CD4 ؉ T cell subsets, in some instances, correlated with disease outcome. These data demonstrate for the first time LCMV-specific CD8 ؉ and CD4 ؉ T cells in infected humans and begin to provide new insights into memory T cell responses following an acute virus infection.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (64)

  1. Akondy, R. S., et al. 2009. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8ϩ T cell response. J. Immunol. 183: 7919-7930.
  2. Appay, V., et al. 2002. Memory CD8ϩ T cells vary in differentiation pheno- type in different persistent virus infections. Nat. Med. 8:379-385.
  3. Barber, D. L., et al. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682-687.
  4. Barnes, E., et al. 2004. Ultra-sensitive class I tetramer analysis reveals pre- viously undetectable populations of antiviral CD8ϩ T cells. Eur. J. Immunol. 34:1570-1577.
  5. Barton, L. L., and N. J. Hyndman. 2000. Lymphocytic choriomeningitis virus: reemerging central nervous system pathogen. Pediatrics 105:E35.
  6. Barton, L. L., M. B. Mets, and C. L. Beauchamp. 2002. Lymphocytic chori- omeningitis virus: emerging fetal teratogen. Am. J. Obstet. Gynecol. 187: 1715-1716.
  7. Blackburn, S. D., et al. 2009. Coregulation of CD8ϩ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10:29-37.
  8. Boettler, T., et al. 2006. Expression of the interleukin-7 receptor alpha chain (CD127) on virus-specific CD8ϩ T cells identifies functionally and pheno- typically defined memory T cells during acute resolving hepatitis B virus infection. J. Virol. 80:3532-3540.
  9. Bonthius, D. J., et al. 2007. Congenital lymphocytic choriomeningitis virus infection: spectrum of disease. Ann. Neurol. 62:347-355.
  10. Botten, J., et al. 2007. HLA-A2-restricted protection against lethal lympho- cytic choriomeningitis. J. Virol. 81:2307-2317.
  11. Calvo-Calle, J. M., I. Strug, M. D. Nastke, S. P. Baker, and L. J. Stern. 2007. Human CD4ϩ T cell epitopes from vaccinia virus induced by vaccination or infection. PLoS Pathog. 3:1511-1529.
  12. Champagne, P., et al. 2001. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410:106-111.
  13. Co, M. D., E. D. Kilpatrick, and A. L. Rothman. 2009. Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization. Immunology 128:e718-e727.
  14. Day, C. L., et al. 2003. Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest. 112:831-842.
  15. De Boer, R. J., D. Homann, and A. S. Perelson. 2003. Different dynamics of CD4ϩ and CD8ϩ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol. 171:3928-3935.
  16. Dow, C., et al. 2008. Lymphocytic choriomeningitis virus infection yields overlapping CD4ϩ and CD8ϩ T-cell responses. J. Virol. 82:11734-11741.
  17. Elsaesser, H., K. Sauer, and D. G. Brooks. 2009. IL-21 is required to control chronic viral infection. Science 324:1569-1572.
  18. Enria, D. A., et al. 1987. Tolerance and antiviral effect of ribavirin in patients with Argentine hemorrhagic fever. Antiviral Res. 7:353-359.
  19. Fischer, S. A., et al. 2006. Transmission of lymphocytic choriomeningitis virus by organ transplantation. N. Engl. J. Med. 354:2235-2249.
  20. Frohlich, A., et al. 2009. IL-21R on T cells is critical for sustained function- ality and control of chronic viral infection. Science 324:1576-1580.
  21. Fuller, M. J., et al. 2005. Emergence of CD127high functionally competent memory T cells is compromised by high viral loads and inadequate T cell help. J. Immunol. 174:5926-5930.
  22. Goepfert, P. A., et al. 2000. A significant number of human immunodefi- ciency virus epitope-specific cytotoxic T lymphocytes detected by tetramer binding do not produce gamma interferon. J. Virol. 74:10249-10255.
  23. Hoji, A., and C. R. Rinaldo, Jr. 2005. Human CD8ϩ T cells specific for influenza A virus M1 display broad expression of maturation-associated phenotypic markers and chemokine receptors. Immunology 115:239-245.
  24. Homann, D., L. Teyton, and M. B. Oldstone. 2001. Differential regulation of antiviral T-cell immunity results in stable CD8ϩ but declining CD4ϩ T-cell memory. Nat. Med. 7:913-919.
  25. Kaech, S. M., et al. 2003. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4:1191-1198.
  26. Kagi, D., et al. 1994. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31-37.
  27. Kalams, S. A., and B. D. Walker. 1998. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J. Exp. Med. 188: 2199-2204.
  28. Kasprowicz, V., et al. 2006. Tracking of peptide-specific CD4ϩ T-cell re- sponses after an acute resolving viral infection: a study of parvovirus B19. J. Virol. 80:11209-11217.
  29. Kilpatrick, E. D., et al. 2004. Role of specific CD8ϩ T cells in the severity of a fulminant zoonotic viral hemorrhagic fever, hantavirus pulmonary syn- drome. J. Immunol. 172:3297-3304.
  30. Kotturi, M. F., et al. 2009. Of mice and humans: how good are HLA transgenic mice as a model of human immune responses? Immunome Res. 5:3.
  31. Kotturi, M. F., et al. 2009. A multivalent and cross-protective vaccine strat- egy against arenaviruses associated with human disease. PLoS Pathog. 5:e1000695.
  32. Kotturi, M. F., et al. 2007. The CD8ϩ T-cell response to lymphocytic cho- riomeningitis virus involves the L antigen: uncovering new tricks for an old virus. J. Virol. 81:4928-4940.
  33. Kotturi, M. F., et al. 2008. Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD8ϩ T cell immunodomi- nance. J. Immunol. 181:2124-2133.
  34. Lang, K. S., et al. 2005. Inverse correlation between IL-7 receptor expression and CD8 T cell exhaustion during persistent antigen stimulation. Eur. J. Im- munol. 35:738-745.
  35. Li, C. K., et al. 2008. T cell responses to whole SARS coronavirus in humans. J. Immunol. 181:5490-5500.
  36. Lucas, M., et al. 2004. Ex vivo phenotype and frequency of influenza virus- specific CD4 memory T cells. J. Virol. 78:7284-7287.
  37. McKee, K. T., Jr., J. W. Huggins, C. J. Trahan, and B. G. Mahlandt. 1988. Ribavirin prophylaxis and therapy for experimental argentine hemorrhagic fever. Antimicrob. Agents Chemother. 32:1304-1309.
  38. Miller, J. D., et al. 2008. Human effector and memory CD8ϩ T cell re- sponses to smallpox and yellow fever vaccines. Immunity 28:710-722.
  39. Mongkolsapaya, J., et al. 2003. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9:921-927.
  40. Mongkolsapaya, J., et al. 2006. T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal? J. Immunol. 176:3821-3829.
  41. Moutaftsi, M., et al. 2006. A consensus epitope prediction approach identi- fies the breadth of murine T(CD8ϩ)-cell responses to vaccinia virus. Nat. Biotechnol. 24:817-819.
  42. Murali-Krishna, K., et al. 1998. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8:177- 187.
  43. Oseroff, C., et al. 2005. HLA class I-restricted responses to vaccinia recog- nize a broad array of proteins mainly involved in virulence and viral gene regulation. Proc. Natl. Acad. Sci. U. S. A. 102:13980-13985.
  44. Precopio, M. L., et al. 2007. Immunization with vaccinia virus induces poly- functional and phenotypically distinctive CD8(ϩ) T cell responses. J. Exp. Med. 204:1405-1416.
  45. Psurek, A., C. Neususs, M. Pelzing, and G. K. Scriba. 2005. Analysis of the lipophilic peptaibol alamethicin by nonaqueous capillary electrophoresis- electrospray ionization-mass spectrometry. Electrophoresis 26:4368-4378.
  46. Rabin, R. L., et al. 1999. Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling. J. Im- munol. 162:3840-3850.
  47. Sacre, K., et al. 2005. Repertoire, diversity, and differentiation of specific CD8 T cells are associated with immune protection against human cytomeg- alovirus disease. J. Exp. Med. 201:1999-2010.
  48. Sallusto, F., J. Geginat, and A. Lanzavecchia. 2004. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22:745-763.
  49. Sallusto, F., D. Lenig, R. Forster, M. Lipp, and A. Lanzavecchia. 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effec- tor functions. Nature 401:708-712.
  50. Scriba, T. J., et al. 2005. Ultrasensitive detection and phenotyping of CD4ϩ VOL. 85, 2011 LCMV INFECTION AND HUMAN MEMORY T CELL SUBSETS 11779
  51. T cells with optimized HLA class II tetramer staining. J. Immunol. 175:6334- 6343.
  52. Sidney, J., et al. 2001. Majority of peptides binding HLA-A*0201 with high affinity crossreact with other A2-supertype molecules. Hum. Immunol. 62: 1200-1216.
  53. Sidney, J., et al. 1998. Measurement of MHC/peptide interactions by gel filtration, p. 18.13.11-18.13.19. In J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, and W. Strober (ed.), Current protocols in im- munology. John Wiley & Sons, New York, NY.
  54. Speiser, D. E., et al. 2002. In vivo activation of melanoma-specific CD8(ϩ) T cells by endogenous tumor antigen and peptide vaccines. A comparison to virus-specific T cells. Eur. J. Immunol. 32:731-741.
  55. Sun, Y., et al. 2003. A systematic comparison of methods to measure HIV-1 specific CD8 T cells. J. Immunol. Methods 272:23-34.
  56. Terajima, M., and F. A. Ennis. 2006. Using HLA-transgenic mice to identify immunodominant human CD8ϩ T cell epitopes-does (genome) size mat- ter? Immunol. Lett. 105:97-98.
  57. Van Epps, H. L., et al. 2002. Long-lived memory T lymphocyte responses after hantavirus infection. J. Exp. Med. 196:579-588.
  58. van Leeuwen, E. M., et al. 2005. IL-7 receptor alpha chain expression dis- tinguishes functional subsets of virus-specific human CD8ϩ T cells. Blood 106:2091-2098.
  59. von Herrath, M. G., M. Yokoyama, J. Dockter, M. B. Oldstone, and J. L. Whitton. 1996. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to sub- sequent virus challenge. J. Virol. 70:1072-1079.
  60. Walsh, C. M., et al. 1994. Immune function in mice lacking the perforin gene. Proc. Natl. Acad. Sci. U. S. A. 91:10854-10858.
  61. Wang, P., et al. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4:e1000048.
  62. Yi, J. S., M. Du, and A. J. Zajac. 2009. A vital role for interleukin-21 in the control of a chronic viral infection. Science 324:1572-1576.
  63. Zhang, Q., et al. 2008. Immune epitope database analysis resource AR). Nucleic Acids Res. 36:W513-W518.
  64. 11780 KOTTURI ET AL. J. VIROL.