Numerical approaches to determine the interface tension of curved interfaces from free energy calculations (original) (raw)

A recently proposed method to obtain the surface free energy σ(R) of spherical droplets and bubbles of fluids, using a thermodynamic analysis of two-phase coexistence in finite boxes at fixed total density, is reconsidered and extended. Building on a comprehensive review of the basic thermodynamic theory, it is shown that from this analysis one can extract both the equimolar radius R(e) as well as the radius R(s) of the surface of tension. Hence the free energy barrier that needs to be overcome in nucleation events where critical droplets and bubbles are formed can be reliably estimated for the range of radii that is of physical interest. It is found that the conventional theory of nucleation, where the interface tension of planar liquid-vapor interfaces is used to predict nucleation barriers, leads to a significant overestimation, and this failure is particularly large for bubbles. Furthermore, different routes to estimate the effective radius-dependent Tolman length δ(R(s)) from s...