Using Geographic Information Systems (GIS) to Assess Outcome Disparities in Patients with Type 2 Diabetes and Hyperlipidemia (original) (raw)
Related papers
Spatial Clusters of County-Level Diagnosed Diabetes and Associated Risk Factors in the United States
The Open Diabetes Journal, 2012
Introduction: We examined whether spatial clusters of county-level diagnosed diabetes prevalence exist in the United States and whether socioeconomic and diabetes risk factors were associated with these clusters. Materials and Methods: We used estimated county-level age-adjusted data on diagnosed diabetes prevalence for adults in 3109 counties in the United States (2007 data). We identified four types of diabetes clusters based on spatial autocorrelations: high-prevalence counties with high-prevalence neighbors (High-High), low-prevalence counties with low-prevalence neighbors (Low-Low), low-prevalence counties with high-prevalence neighbors (Low-High), and highprevalence counties with low-prevalence neighbors (High-Low). We then estimated relative risks for clusters being associated with several socioeconomic and diabetesrisk factors. Results: Diabetes prevalence in 1551 counties was spatially associated (p<0.05) with prevalence in neighboring counties. The rate of obesity, physical inactivity, poverty, and the proportion of non-Hispanic blacks were associated with a county being in a High-High cluster versus being a non-cluster county (7% to 36% greater risk) or in a Low-Low cluster (13% to 67% greater risk). The percentage of non-Hispanic blacks was associated with a 7% greater risk for being in a Low-High cluster. The rate of physical inactivity and the percentage of Hispanics or non-Hispanic American Indians were associated with being in a High-Low cluster (5% to 21% greater risk). Discussion: Distinct spatial clusters of diabetes prevalence exist in the United States. Strong association between diabetes clusters and socioeconomic and other diabetes risk factors suggests that interventions might be tailored according to the prevalence of modifiable factors in specific counties.
Using GIS and Secondary Data to Target Diabetes-Related Public Health Efforts
Public Health Reports, 2013
Objectives. To efficiently help communities prevent and manage diabetes, health departments need to be able to target populations with high risk but low resources. To aid in this process, we mapped county-level diabetes-related rates and resources/use using publicly available secondary data to identify Michigan counties with high diabetes prevalence and low or no medical and/or community resources. Methods. We collected county-level diabetes-related rates and resources from Web-based sources and mapped them using geographic information systems (GIS) software. Data included age-adjusted county diabetes rates, diabetesrelated medical resource and resource use (i.e., the number of endocrinologists and percentage of Medicare patients with diabetes who received hemoglobin A1c testing in the past year), community resources (i.e., the number of certified diabetes self-management education and diabetes support groups), as well as population estimates and demographics (e.g., rural residence, education, poverty, and race/ethnicity). We created GIS maps highlighting areas that had higher-than-median rates of disease and lower-than-median resources. We also conducted linear, logistic, and Poisson regression analyses to confirm GIS findings. Results. There were clear regional trends in resource distribution across Michigan. The 15 counties in the Upper Peninsula were lacking in medical resources but higher in community resources compared with the 68 counties in the Lower Peninsula. There was little apparent association between need (diabetes prevalence) and diabetes-related resources/use. Specific counties with high diabetes prevalence and low resources were easily identified using GIS mapping. Conclusion. Using public data and mapping tools identified diabetes healthservice shortage areas for targeted public health programming.
Spatial patterns of diabetes related health problems for vulnerable populations in Los Angeles
International Journal of Health Geographics, 2010
Background: Rates for Diabetes Mellitus continue to rise in most urban areas of the United States, with a disproportionate burden suffered by minorities and low income populations. This paper presents an approach that utilizes address level data to understand the geography of this disease by analyzing patients seeking diabetes care through an emergency department in a Los Angeles County hospital. The most vulnerable frequently use an emergency room as a common care access point, and such care is especially costly. A fine scale GIS analysis reveals hotspots of diabetes related health problems and provides output useful in a clinic setting. Indeed these results were used to support the work of a progressive diabetes clinic to guide management and intervention strategies. Results: Hotspots of diabetes related health problems, including neurological and kidney issues were mapped for vulnerable populations in a central section of Los Angeles County. The resulting spatial grid of rates and significance were overlaid with new patient residential addresses attending an area clinic. In this way neighbourhood diabetes health characteristics are added to each patient's individual health record. Of the 29 patients, 4 were within statistically significant hotspots for at least one of the conditions being investigated. Conclusions: Although exploratory in nature, this approach demonstrates a novel method to conduct GIS based investigations of urban diabetes while providing support to a progressive diabetes clinic looking for novel means of managing and intervention. In so doing, this analysis adds to a relatively small literature on fine scale GIS facilitated diabetes research. Similar data should be available for most hospitals, and with due consideration for preserving spatial confidentiality, analysis outputs such as those presented here should become more commonly employed in other investigations of chronic diseases.
JMIR Research Protocols
Background Diabetes prevalence and incidence vary by neighborhood socioeconomic environment (NSEE) and geographic region in the United States. Identifying modifiable community factors driving type 2 diabetes disparities is essential to inform policy interventions that reduce the risk of type 2 diabetes. Objective This paper aims to describe the Diabetes Location, Environmental Attributes, and Disparities (LEAD) Network, a group funded by the Centers for Disease Control and Prevention to apply harmonized epidemiologic approaches across unique and geographically expansive data to identify community factors that contribute to type 2 diabetes risk. Methods The Diabetes LEAD Network is a collaboration of 3 study sites and a data coordinating center (Drexel University). The Geisinger and Johns Hopkins University study population includes 578,485 individuals receiving primary care at Geisinger, a health system serving a population representative of 37 counties in Pennsylvania. The New York...
PloS one, 2024
Background Hospitalizations due to diabetes complications are potentially preventable with effective management of the condition in the outpatient setting. Diabetes-related hospitalization (DRH) rates can provide valuable information about access, utilization, and efficacy of healthcare services. However, little is known about the local geographic distribution of DRH rates in Florida. Therefore, the objectives of this study were to investigate the geographic distribution of DRH rates at the ZIP code tabulation area (ZCTA) level in Florida, identify significant local clusters of high hospitalization rates, and describe characteristics of ZCTAs within the observed spatial clusters. Methods Hospital discharge data from 2016 to 2019 were obtained from the Florida Agency for Health Care Administration through a Data Use Agreement with the Florida Department of Health. Raw and spatial empirical Bayes smoothed DRH rates were computed at the ZCTA level. High-rate DRH clusters were identified using Tango's flexible spatial scan statistic. Choropleth maps were used to display smoothed DRH rates and significant high-rate spatial clusters. Demographic, socioeconomic, and healthcare-related characteristics of cluster and non-cluster ZCTAs were compared using the Wilcoxon rank sum test for continuous variables and Chi-square test for categorical variables. Results There was a total of 554,133 diabetes-related hospitalizations during the study period. The statewide DRH rate was 8.5 per 1,000 person-years, but smoothed rates at the ZCTA level ranged from 0 to 101.9. A total of 24 significant high-rate spatial clusters were identified. High-rate clusters had a higher percentage of rural ZCTAs (60.9%) than non-cluster ZCTAs (41.8%). The median percent of non-Hispanic Black residents was significantly (p < 0.0001) higher in cluster ZCTAs than in non-cluster ZCTAs. Populations of cluster ZCTAs also had
International Journal of Health Geographics, 2015
Background: Type 2 diabetes is a major health concern all over the world. The prevention of diabetes is important but so is well-balanced diabetes care. Diabetes care can be influenced by individual and neighborhood socio-economic factors and geographical accessibility to health care services. The aim of the study is to find out whether two different area classifications of urban and rural areas give different area-level results of achieving the targets of control and treatment among type 2 diabetes patients exemplified by a Finnish region. The study exploits geo-referenced patient data from a regional primary health care patient database combined with postal code area-level socio-economic variables, digital road data and two grid based classifications of areas: an urban-rural dichotomy and a classification with seven area types.
International Journal of Health Geographics, 2024
Background Early diagnosis, control of blood glucose levels and cardiovascular risk factors, and regular screening are essential to prevent or delay complications of diabetes. However, most adults with diabetes do not meet recommended targets, and some populations have disproportionately high rates of potentially preventable diabetes-related hospitalizations. Understanding the factors that contribute to geographic disparities can guide resource allocation and help ensure that future interventions are designed to meet the specific needs of these communities. Therefore, the objectives of this study were (1) to identify determinants of diabetes-related hospitalization rates at the ZIP code tabulation area (ZCTA) level in Florida, and (2) assess if the strengths of these relationships vary by geographic location and at different spatial scales. Methods Diabetes-related hospitalization (DRH) rates were computed at the ZCTA level using data from 2016 to 2019. A global ordinary least squares regression model was fit to identify socioeconomic, demographic, healthcarerelated, and built environment characteristics associated with log-transformed DRH rates. A multiscale geographically weighted regression (MGWR) model was then fit to investigate and describe spatial heterogeneity of regression coefficients. Results Populations of ZCTAs with high rates of diabetes-related hospitalizations tended to have higher proportions of older adults (p < 0.0001) and non-Hispanic Black residents (p = 0.003). In addition, DRH rates were associated with higher levels of unemployment (p = 0.001), uninsurance (p < 0.0001), and lack of access to a vehicle (p = 0.002). Population density and median household income had significant (p < 0.0001) negative associations with DRH rates. Non-stationary variables exhibited spatial heterogeneity at local (percent non-Hispanic Black, educational attainment), regional (age composition, unemployment, health insurance coverage), and statewide scales (population density, income, vehicle access).
BMJ Open, 2015
To review the clinical data for people with diabetes mellitus with reference to their location and clinical care in a general practice in Australia. Materials and methods: Patient data were extracted from a general practice in Western Australia. Iterative data-cleansing steps were taken. Data were grouped into Statistical Area level 1 (SA1), designated as the smallest geographical area associated with the Census of Population and Housing. The data were analysed to identify if SA1s with people aged 70 years and older, and with relatively high glycosylated haemoglobin (HbA1c) were significantly clustered, and whether this was associated with their medical consultation rate and treatment. The analysis included Cluster and Outlier Analysis using Moran's I test. Results: The overall median age of the population was 70 years with more males than females, 53% and 47%, respectively. Older people (>70 years) with relatively high HbA1c comprised 9.3% of all people with diabetes in the sample, and were clustered around two 'hotspot' locations. These 111 patients do not attend the practice more or less often than people with diabetes living elsewhere in the practice (p=0.098). There was some evidence that they were more likely to be recorded as having consulted with regard to other chronic diseases. The average number of prescribed medicines over a 13-month time period, per person in the hotspots, was 4.6 compared with 5.1 in other locations (p=0.26). Their prescribed therapy was deemed to be consistent with the management of people with diabetes in other locations with reference to the relevant diabetes guidelines. Conclusions: Older patients with relatively high HbA1c are clustered in two locations within the practice area. Their hyperglycaemia and ongoing cardiovascular risk indicates causes other than therapeutic inertia. The causes may be related to the social determinants of health, which are influenced by geography.