Preliminary study of plasma vascular endothelial growth factor (VEGF) during low- and high-dose radiation therapy of dogs with spontaneous tumors (original) (raw)
Related papers
Radiotherapy and Oncology, 2006
BACK GROUND AND PURPOSE: Vascular endothelial growth factor (VEGF), a specific pro-angiogenic factor is proposed to be involved in cancer progression and resistance to radiation therapy by promoting angiogenesis and by protecting endothelial cells from radiation induced apoptosis. The aim of this study, was first to assess the influence of ionizing radiation on plasma VEGF concentration in spontaneous canine tumors during fractionated radiation therapy with curative or palliative intent and second to analyze plasma VEGF concentration as predictor for treatment outcome. PATIENTS AND METHODS: For plasma VEGF analysis a human VEGF enzyme linked immunosorbent assay was used. Sixty dogs with various tumor types were included in this study. Dogs were irradiated with either low dose per fx (3-3.5 Gy per fraction, total dose: 42-49 Gy, group A: curative intent) or high dose per fx (6-8 Gy per fraction, total dose: 24-30 Gy, group B: palliative intent). Blood samples were taken before and after dose application at certain time points during therapy. Follow-up evaluation was performed for analysis of time to treatment failure and survival. RESULTS: Repeated measures analysis showed no increase of plasma VEGF in dogs treated with fractionated radiation therapy (group A and B). Dichotomizing baseline plasma VEGF into two groups with high and low plasma VEGF, resulted in shorter time to treatment failure in dogs with high plasma VEGF levels (TTF, group A: P=0.038, group B: P=0.041). CONCLUSIONS: This study demonstrated that dogs with a plasma VEGF level higher than 5 pg/ml had a poorer outcome after radiation therapy. It is therefore, suggested, to use plasma VEGF as predictor for treatment outcome in radiation therapy.
Radiation up-regulates the expression of VEGF in a canine oral melanoma cell line
Journal of Veterinary Science, 2013
To evaluate radiosensitivity and the effects of radiation on the expression of vascular endothelial growth factor (VEGF) and VEGF receptors in the canine oral melanoma cell line, TLM 1, cells were irradiated with doses of 0, 2, 4, 6, 8 and 10 Gray (Gy). Survival rates were then determined by a MTT assay, while vascular endothelial growth factor receptor (VEGFR)-1 and-2 expression was measured by flow cytometry and apoptotic cell death rates were investigated using an Annexin assay. Additionally, a commercially available canine VEGF ELISA kit was used to measure VEGF. Radiosensitivity was detected in TLM 1 cells, and mitotic and apoptotic cell death was found to occur in a radiation dose dependent manner. VEGF was secreted constitutively and significant up-regulation was observed in the 8 and 10 Gy irradiated cells. In addition, a minor portion of TLM 1 cells expressed vascular endothelial growth factor receptor (VEGFR)-1 intracellularly. VEGFR-2 was detected in the cytoplasm and was down-regulated following radiation with increasing dosages. In TLM 1 cells, apoptosis plays an important role in radiation induced cell death. It has also been suggested that the significantly higher VEGF production in the 8 and 10 Gy group could lead to tumour resistance.
Cancer Research, 1999
The family of vascular endothelial growth factor (VEGF) proteins include potent and specific mitogens for vascular endothelial cells that function in the regulation of angiogenesis. Inhibition of VEGF-induced angiogenesis, either by neutralizing antibodies or a dominant-negative soluble receptor, blocks the growth of primary and metastatic experimental tumors. Here we report that VEGF expression is induced in Lewis lung carcinomas (LLCs) both in vitro and in vivo after exposure to ionizing radiation (IR) and in human tumor cell lines (Seg-1 esophageal adenocarcinoma, SQ20B squamous cell carcinoma, T98 and U87 glioblastomas, and U1 melanoma) in vitro. The biological significance of IR-induced VEGF production is supported by our finding that treatment of tumor-bearing mice (LLC, Seg-1, SQ20B, and U87) with a neutralizing antibody to VEGF-165 before irradiation is associated with a greater than additive antitumor effect.
British Journal of Cancer, 2001
The vascular endothelial growth factor (VEGF) receptor is a major target for anti-angiogenesis-based cancer treatment. Here we report the treatment effect of ionizing radiation in combination with the novel orally bioavailable VEGF receptor tyrosine kinase inhibitor PTK787/ZK222584 on endothelial cell proliferation in vitro and with tumour xenografts in vivo. Combined treatment of human umbilical vein endothelial cells with increasing doses of PTK787/ZK222584 and ionizing radiation abrogated VEGF-dependent proliferation in a dosedependent way, but inhibition of endothelial cell proliferation was not due to apoptosis induction. In vivo, a combined treatment regimen of PTK787/ZK222584 (4 × 100 mg/kg) during 4 consecutive days in combination with ionizing radiation (4 × 3 Gy) exerted a substantial tumour growth delay for radiation-resistant p53-disfunctional tumour xenografts derived from SW480 colon adenocarcinoma cells while each treatment modality alone had only a minimal effect on tumour size and neovascularization. SW480 tumours from animals that received a combined treatment regimen, displayed not only an extended tumour growth delay but also a significant decrease in the number of microvessels in the tumour xenograft. These results support the model of a cooperative antitumoural effect of angiogenesis inhibitor and irradiation and show that the orally bioavailable VEGF receptor tyrosine kinase inhibitor PTK787/ZK222584 is suitable for combination therapy with irradiation.
Cancer research, 1999
The family of vascular endothelial growth factor (VEGF) proteins include potent and specific mitogens for vascular endothelial cells that function in the lation of angiogenesis Inhibition of VEGF-induced angiogenesis either by neutralizing antibodies or dominant-negative soluble receptor, blocks the growth of primary and metastatic experimental tumors Here we report that VEGF expression is induced in Lewis lung carcinomas (LLCs) both in vitro and vivo after exposure to ionizing radiation (IR) and in human tumor cell lines (Seg-1 esophageal adenocarcinoma, SQ20B squamous cell carcinoma, T98 and U87 glioblastomas, and U1 melanoma) in vitro. The biological significance of IR-induced VEGF production is supported by our finding that treatment of tumor-bearing mice (LLC, Seg-1, SQ20B, and U87) with a neutralizing antibody to VEGF-165 before irradiation is associated with a greater than additive antitumor effect. In vitro, the addition of VEGF decreases IR-induced killing of human umbilica...
2005
Background: Vascular endothelial growth factor (VEGF) is a potent mitogen for endothelial cells, and its expression has been correlated with increased tumour angiogenesis. Although numerous publications dealing with the measurement of circulating VEGF for diagnostic and therapeutic monitoring have been published, the relationship between the production of tissue VEGF and its concentration in blood is still unclear. The aims of this study were to determine: 1) The expression pattern of VEGF isoforms at the protein level in colorectal and lung adenocarcinoma in comparison to the pattern in corresponding adjacent normal tissues 2) The relationship between the expression pattern of VEGF and total level of circulating VEGF in the blood to clarify whether the results of measuring circulating VEGF can be used to predict VEGF expression in tumour tissues. Methods: Ninety-four tissue samples were obtained from patients, 76 colorectal tumour tissues and 18 lung tumour tissues. VEGF protein expression pattern and total circulating VEGF were examined using western blot and capture ELISA, respectively. Results: Three major protein bands were predominately detected in tumour samples with an apparent molecular mass under reducing conditions of 18, 23 and 26 kDa. The 18 kDa VEGF protein was expressed equally in both normal and colorectal tumour tissues and predominately expressed in normal tissues of lung, whereas the 23 and 26 kDa protein was only detected at higher levels in tumour tissues. The 18, 23 and 26 kDa proteins are believed to represent the VEGF 121 , the VEGF 165 and the VEGF 189 , respectively. There was a significant correlation of the expression of VEGF 165 with a smaller tumour size maximum diameter <5 cm (p < 0.05), and there was a significant correlation of VEGF 189 with advanced clinical stage of colorectal tumours. The measurement of total circulating VEGF in serum revealed that cancer patients significantly (p < 0.001) possessed a higher level of circulating VEGF (1081 ± 652 pg/ml in colorectal and 1,251 ± 568 pg/ml in lung) than a healthy volunteer group (543 ± 344 pg/ml). No correlation between the level of circulating VEGF and the pathologic features of tumours was observed. Conclusion: Our findings indicate that the expression patterns of VEGF isoforms are altered during tumourigenesis as certain isoform overexpression in tumour tissues correlated with tumour progression indicating their important role in tumour development. However, measurement of VEGF in the circulation as a prognostic marker needs to be carefully evaluated as the cell-associated isoform (VEGF 189), but not the soluble isoform (VEGF 121 and VEGF 165) appears to play important role in tumour progression.