Cellulose solvent-based pretreatment for corn stover and avicel: concentrated phosphoric acid versus ionic liquid [BMIM] Cl (original) (raw)

New lignocellulose pretreatments using cellulose solvents: a review

Journal of Chemical …

Non-food lignocellulosic biomass is the most abundant renewable bioresource as a collectable, transportable, and storable chemical energy that is far from fully utilized. The goal of biomass pretreatment is to improve the enzymatic digestibility of pretreated lignocellulosic biomass. Many substrate factors, such as substrate accessibility, lignin content, particle size and so on, contribute to its recalcitrance. Cellulose accessibility to hydrolytic enzymes is believed to be the most important substrate characteristic limiting enzymatic hydrolysis. Cellulose solvents effectively break linkages among cellulose, hemicellulose and lignin, and also dissolve highly-ordered hydrogen bonds in cellulose fibers accompanied with great increases in substrate accessibility. Here the history and recent advances in cellulose solvent-based biomass pretreatment are reviewed and perspectives provided for addressing remaining challenges. The use of cellulose solvents, new and existing, provides opportunities for emerging biorefineries to produce a few precursors (e.g. monosaccharides, oligosaccharides, and lignin) for the production of low-value biofuels and value-added biochemicals.

Comparative study of corn stover pretreated by dilute acid and cellulose solvent‐based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, …

Biotechnology and …, 2009

Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only $60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a nonhydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m 2 /g, nearly twice that of the DA-pretreated biomass (5.89 m 2 /g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA-and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

Comparative Study of Corn Stover Pretreated by Dilute Acid and Cellulose Solvent-Based Lignocellulose Fractionation: Enzymatic Hydrolysis, Supramolecular Structure, and Substrate Accessibility

Biotechnology and Bioengineering, 2009

Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only ∼60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m2/g, nearly twice that of the DA-pretreated biomass (5.89 m2/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility. Biotechnol. Bioeng. 2009;103: 715–724. © 2009 Wiley Periodicals, Inc.

Comparative Study of Alkali and Acidic Cellulose Solvent Pretreatment of Corn Stover for Fermentable Sugar Production

BioResources, 2015

As an immerging lignocellulose pretreatment strategy, cellulose solventbased pretreatment can break down inter-and intra-molecular hydrogen bonds and disrupt the rigid structure of cellulose. Two cellulose solvent pretreatments were examined and compared in this study: NaOH/urea and concentrated phosphoric acid. Pretreated corn stover substrates were characterized by optical microscopy, confocal laser scanning microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and chemical analyses. It was found that both alkaline-and acid-based cellulose solvent pretreatments can disrupt cell wall structures and cause partial dissolution of the cell wall components. The results indicated that the alkaline-based cellulose solvent was more effective at removing lignin as compared with the phosphoric acid-based cellulose solvent. The initial enzymatic saccharification rate of corn stover pretreated by alkaline-based cellulose solvent was greatly enhanced; complete saccharification of the glucans was achieved within 24 h at an enzyme loading of 15 filter paper units (FPU)/g substrate. The enzymatic digestibility of corn stover pretreated by phosphoric acid was lower than that of the alkaline-based system; this was probably caused by the presence of a high concentration of lignin.

Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solvent‐based lignocellulose fractionation and soaking in aqueous …

Biotechnology and …, 2011

While many pretreatments attempt to improve the enzymatic digestibility of biomass by removing lignin, this study shows that improving the surface area accessible to cellulase is a more important factor for achieving a high sugar yield. Here we compared the pretreatment of switchgrass by two methods, cellulose solvent-and organic solvent-based lignocellulose fractionation (COSLIF) and soaking in aqueous ammonia (SAA). Following pretreatment, enzymatic hydrolysis was conducted at two cellulase loadings, 15 filter paper units (FPU)/g glucan and 3 FPU/g glucan, with and without BSA blocking of lignin absorption sites. The hydrolysis results showed that the lignin remaining after SAA had a significant negative effect on cellulase performance, despite the high level of delignification achieved with this pretreatment. No negative effect due to lignin was detected for COSLIF-treated substrate. SEM micrographs, XRD crystallinity measurements, and cellulose accessibility to cellulase (CAC) determinations confirmed that COSLIF fully disrupted the cell wall structure, resulting in a 16-fold increase in CAC, while SAA caused a 1.4-fold CAC increase. A surface plot relating the lignin removal, CAC, and digestibility of numerous samples (both pure cellulosic substrates and lignocellulosic materials pretreated by several methods) was also developed to better understand the relative impacts of delignification and CAC on glucan digestibility.

An Integrated Process of Ionic Liquid Pretreatment and Enzymatic Hydrolysis of Lignocellulosic Biomass with Immobilised Cellulase

An integrated process of lignocellulosic biomass conversion was set up involving pretreatment by an ionic liquid (IL) and hydrolysis of cellulose using cellulase immobilised by the sol-gel method, with recovery and reuse of both the IL and biocatalyst. As all investigated ILs, regardless of the nature of the anion and the cation, led to the loss of at least 50% of the hydrolytic activity of cellulase, the preferred solution involved reprecipitation of cellulose and lignin after the pretreatment, instead of performing the enzymatic hydrolysis in the same reaction system. The cellulose recovered after pretreatment with 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]) and dimethylsulfoxide (DMSO) (1:1 ratio, v/v) was hydrolysed with almost double yield after 8 h of reaction time with the immobilised cellulase, compared to the reference microcrystalline cellulose. The dissolution capacity of the pretreatment mixture was maintained at satisfactory level during five reuse cycles. The immobilised cellulase was recycled in nine reaction cycles, preserving about 30% of the initial activity.

Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates

Biotechnology for Biofuels, 2011

A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the cellulose chains per se, but rather the limited accessibility of the enzymes to the cellulose chains due to the physical structure of the cellulosic substrate.

An integrated process of ionic liquid preteatment and enzymatic hydrolysis of lignocellulosic biomass with immobilized cellulase

An integrated process of lignocellulosic biomass conversion in useful products was set up, involving pretreatment by an ionic liquid (IL) and hydrolysis of cellulose using sol-gel entrapped cellulase, with recovery and reuse of both IL and immobilized biocatalyst. As all investigated ILs, regardless to the nature of anion and cation, led to loss of at least 50% of the hydrolytic activity of cellulase, the preferred solution was reprecipitation of cellulose and lignin after the pretreatment, instead of performing the enzymatic hydrolysis in the same reaction system. The cellulose recovered after the pretreatment with 1-ethyl-3-methylimidazolium acetate and dimethylsulfoxide co-solvent (1:1 ratio, v/v), was hydrolyzed with almost double yield at 8 h reaction time by the immobilized cellulase, compared to the reference microcrystalline cellulose. The dissolution capacity of the pretreatment mixture was maintained at satisfactory level during five reuse cycles. The immobilized cellulase was recycled in nine reaction cycles, preserving about 30% of the initial activity.