G-Quadruplex Nucleic Acids (original) (raw)

Physico-chemical analysis of G-quadruplex containing bunch-oligonucleotides

International Journal of Biological Macromolecules, 2007

A growing number of evidences suggest that DNA G-quadruplex structures play an important role in many relevant biological processes. The introduction of chemical modifications in quadruplex structures could enhance the in vivo biological activity. The correlation between the physicochemical properties and chemical modifications represents an essential step toward the de novo design of quadruplex forming oligonucleotides for biomedical applications. We report the physico-chemical characterisation of a quadruplex formed by a bunch of four d(TG 4 T) oligonucleotides whose 3 -ends are linked together by a tetra-branched linker. The study was performed by circular dichroism, gel electrophoresis and molecular modelling techniques. The data indicate an high stability for this kind of quadruplex and add some information on the role of the tetra-branched linker on the quadruplex stability.

Structural Diversity and Specific Recognition of Four Stranded G-Quadruplex DNA

Current Molecular Medicine, 2011

Structural multitude of nucleic acids serves basis for its multiple merits and applications. During structural transitions, significant to perform respective cellular functions, these DNA forms can vary from the single stranded to multi-stranded species. Hence, beyond the image of a monotonous DNA double-helix, there is now increasing interest in other polymorphic/ multi-stranded forms, the roles they may play in vivo and their potential use in therapeutics. Distinct guanine-rich nucleic acid sequences readily form a structurally diverse four-stranded architecture called G-quadruplexes. In addition to their presence at physical ends of chromosomes called telomeres, occurrence of these structural motifs in the upstream promoter regions of a number of genes, oncogenes and near transcription start sites, highlights that G-quadruplexes are involved in regulation of gene expression. Cancer cells typically possess shorter telomeres and have telomerase activity greatly exceeding that of normal cells. These differences create an opportunity to use anticancer therapies targeting telomerase and telomeres. The ability of small molecules to interact with and presumably stabilize Gquadruplex structures as a means of inhibiting telomerase has been a major drug design effort. Ligands, capable of interacting with four-stranded G-quadruplex have been generated. The discovery of proteins including transcription factors, recognizing G-quadruplexes, and conferring stabilization or unfolding them in biological systems, again makes G-quadruplexes, biologically pertinent structures. This review is an attempt to summarize the rapidly evolving literature exploring the amazing polymorphism of G-quadruplexes, and understanding their structure-specific-recognition and biological relevance, keeping in mind that G-tetraplexes are not only important drug targets, but may also act as gene regulatory elements. A pertinent detail of the challenges towards the rational design of structure-specific novel drugs has also been discussed.

The role of thermodynamics and kinetics in ligand binding to G-quadruplex DNA

Chemical Communications, 2012

Molecular dynamics simulations were used to investigate the binding of four different 2,4,6-triarylpyridines to G-quadruplex DNA. Both the binding free energies, and the kinetics of binding are required to explain the measured degree of ligand induced stabilisation of the compounds, with bulky substituents having the potential to prevent the ligand from reaching the lowest energy binding site.

Stabilizing parallel G-quadruplex DNA by a new class of ligands: Two non-planar alkaloids through interaction in lateral grooves

Biochimie, 2009

Human DNA sequences consisting of tandem guanine (G) nucleotides can fold into a four-stranded structure named G-quadruplex via Hoogsteen hydrogen bonding. As the sequences forming G-quadruplex exist in essential regions of eukaryotic chromosomes and are involved in many important biological processes, the study of their biological functions has currently become a hotspot. Compounds selectively binding and stabilizing G-quadruplex structures have the potential to inhibit telomerase activity or alter oncogene expression levels and thus may act as antitumor agents. Most of reported G-quadruplex ligands generally have planar structures which stabilize G-quadruplex by p-p stacking.

Interaction of G-Quadruplexes with Nonintercalating Duplex-DNA Minor Groove Binding Ligands

Bioconjugate Chemistry, 2011

The enzyme telomerase synthesizes the G-rich DNA strands of the telomere and its activity is often associated with cancer. The telomerase may be therefore responsible for the ability of a cancer cell to escape apoptosis. The G-rich DNA sequences often adopt tetra-stranded structure, known as the G-quadruplex DNA (G4-DNA). The stabilization of the telomeric DNA into the G4-DNA structures by small molecules has been the focus of many researchers for the design and development of new anticancer agents. The compounds which stabilize the G-quadruplex in the telomere inhibit the telomerase activity. Besides telomeres, the G4-DNA forming sequences are present in the genomic regions of biological significance including the transcriptional regulatory and promoter regions of several oncogenes. Inducing a G-quadruplex structure within the G-rich promoter sequences is a potential way of achieving selective gene regulation. Several G-quadruplex stabilizing ligands are known. Minor groove binding ligands (MGBLs) interact with the double-helical DNA through the minor grooves sequence-specifically and interfere with several DNA associated processes. These MGBLs when suitably modified switch their preference sometimes from the duplex DNA to G4-DNA and stabilize the G4-DNA as well. Herein, we focus on the recent advances in understanding the Gquadruplex structures, particularly made by the human telomeric ends, and review the results of various investigations of the interaction of designed organic ligands with the G-quadruplex DNA while highlighting the importance of MGBL-G-quadruplex interactions.

Structure and Stability of a Dimeric G-Quadruplex Formed by Cyclic Oligonucleotides

Journal of Nucleic Acids, 2010

We have studied the structure and stability of the cyclic dodecamer d, containing two copies of the human telomeric repeat. In the presence of sodium, NMR data are consistent with a dimeric structure of the molecule in which two cycles self-associate forming a quadruplex with three guanine tetrads connected by edgewise loops. The two macrocycles are arranged in a parallel way, and the dimeric structure exhibits a high melting temperature. These results indicate that cyclization of the phosphodiester chain does not prevent quadruplex formation, although it affects the global topology of the quadruplex.

Ligands playing musical chairs with G-quadruplex DNA: A rapid and simple displacement assay for identifying selective G-quadruplex binders

Biochimie, 2008

We report here the details of G4-FID (G-quadruplex fluorescent intercalator displacement), a simple method aiming at evaluating quadruplex-DNA binding affinity and quadruplex-over duplex-DNA selectivity of putative ligands. This assay is based on the loss of fluorescence upon displacement of thiazole orange from quadruplexand duplex-DNA matrices. The original protocol was tested using various quadruplex-and duplex-DNA targets, and with a wide panel of G-quadruplex ligands belonging to different families (i.e. from quinacridines to metallo-organic ligands) likely to display various binding modes. The reliability of the assay is further supported by comparisons with FRET-melting and ESI-MS assays. that is not subjected to structural interconversion, the TBA (thrombin binding aptamer) . Finally, because quadruplex-vs. duplex-selectivity is a critical issue and because binding of both probe and ligand to duplex-DNA may be length-and sequence-dependent, we compare the results obtained with the 17-base pair duplex-DNA (dsl7) used in our initial work with a 26-bp duplex (ds26). G4-FID experiments reported herein were carried out with a set of 16 quadru-plex-ligands (from bisquinolinium to metallo-organic ligands) with two different QFOs (22AG , TBA ), in two different salt conditions (Na + , K + ) and with two different DNA control duplex-DNAs (dsl7 [31] and ds26 ).

Synthesis and Characterization of Monomolecular DNA G-Quadruplexes Formed by Tetra-End-Linked Oligonucleotides

Bioconjugate Chemistry, 2006

Guanine-rich DNA sequences are widely dispersed in the eukaryotic genome and are abundant in regions with relevant biological significance. They can form quadruplex structures stabilized by guanine quartets. These structures differ for number and strand polarity, loop composition, and conformation. We report here the syntheses and the structural studies of a set of interconnected d(TG 4 T) fragments which are tethered, with different orientations, to a tetra-end-linker in an attempt to force the formation of specific four-stranded DNA quadruplex structures. Two synthetic strategies have been used to obtain oligodeoxyribonucleotide (ODN) strands linked with their 3′-or 5′-ends to each of the four arms of the linker. The first approach allowed the synthesis of tetra-end-linked ODN (TEL-ODN) containing the four ODN strands with a parallel orientation, while the latter synthetic pathway led to the synthesis of TEL-ODNs each containing antiparallel ODN pairs. The influence of the linker at 3′-or 5′-ODN, on the quadruplex typology and stability, in the presence of sodium or potassium ions, has been investigated by circular dichroism (CD), CD thermal denaturation, 1 H NMR experiments at variable temperature, and molecular modeling. All synthesized TEL-ODNs formed parallel G-quadruplex structures. Particularly, the TEL-ODN containing all parallel ODN tracts formed very stable parallel G-quadruplex complexes, whereas the TEL-ODNs containing antiparallel ODN pairs led to relatively less stable parallel G-quadruplexes. The molecular modeling data suggested that the above antiparallel TEL-ODNs can adopt parallel G-quadruplex structures thanks to a considerable folding of the tetra-end-linker around the whole quadruplex scaffold.