Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop (original) (raw)
Related papers
A Genome-Wide Survey of Date Palm Cultivars Supports Two Major Subpopulations in Phoenix dactylifera
G3: Genes|Genomes|Genetics, 2015
The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is intimately tied to the history of human civilization. There are hundreds of commercial cultivars with distinct fruit shapes, colors and sizes growing mainly in arid lands from the west of North Africa to India. The origin of date palm domestication is still uncertain and few studies have attempted to document genetic diversity across multiple regions. We conducted genotyping-by-sequencing on 70 female cultivar samples from across the date palm-growing regions, including four Phoenix species as outgroup. Here, for the first time we generate genome-wide genotyping data for 13,000 -65,000 SNPs in a diverse set of date palm fruit and leaf samples. Our analysis provides the first genome-wide evidence confirming recent findings that the date palm cultivars segregate into two main regions of shared genetic background from North Africa and the Arabian Gulf. We identify genomic regions with high densities of geographically segregating SNPs and also observe higher levels of allele fixation on the recently described X-chromosome than on the autosomes. Our results fit a model with two centers of earliest cultivation including date palms autochthonous to North Africa. These results adjust our understanding of human agriculture history and will provide the foundation for more directed functional studies and a better understanding of genetic diversity in date palm.
Genome-wide association mapping of date palm fruit traits
Nature Communications
Date palms (Phoenix dactylifera) are an important fruit crop of arid regions of the Middle East and North Africa. Despite its importance, few genomic resources exist for date palms, hampering evolutionary genomic studies of this perennial species. Here we report an improved long-read genome assembly for P. dactylifera that is 772.3 Mb in length, with contig N50 of 897.2 Kb, and use this to perform genome-wide association studies (GWAS) of the sex determining region and 21 fruit traits. We find a fruit color GWAS at the R2R3-MYB transcription factor VIRESCENS gene and identify functional alleles that include a retrotransposon insertion and start codon mutation. We also find a GWAS peak for sugar composition spanning deletion polymorphisms in multiple linked invertase genes. MYB transcription factors and invertase are implicated in fruit color and sugar composition in other crops, demonstrating the importance of parallel evolution in the evolutionary diversification of domesticated sp...
De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)
Nature Biotechnology, 2011
Date palm is one of the most economically important woody crops cultivated in the Middle East and North Africa and is a good candidate for improving agricultural yields in arid environments. Nonetheless, long generation times (5-8 years) and dioecy (separate male and female trees) have complicated its cultivation and genetic analysis. To address these issues, we assembled a draft genome for a Khalas variety female date palm, the first publicly available resource of its type for a member of the order Arecales. The ~380 Mb sequence, spanning mainly gene-rich regions, includes >25,000 gene models and is predicted to cover ~90% of genes and ~60% of the genome. Sequencing of eight other cultivars, including females of the Deglet Noor and Medjool varieties and their backcrossed males, identified >3.5 million polymorphic sites, including >10,000 genic copy number variations. A small subset of these polymorphisms can distinguish multiple varieties. We identified a region of the genome linked to gender and found evidence that date palm employs an XY system of gender inheritance.
BMC Genomics
Background: The date palm is one of the oldest cultivated fruit trees. The tree can withstand high temperatures and low water and the fruit can be stored dry offering nutrition across the year. The first region of cultivation is believed to be near modern day Iraq, however, where and if the date palm was domesticated is still a topic of debate. Recent studies of chloroplast and genomic DNA revealed two major subpopulations of cultivars centered in both the Eastern range of date palm cultivation including Arabian Peninsula, Iraq and parts of South Asia, and the Western range, including North Africa. Results: To better understand the origins of date palm cultivation we sequenced and analyzed over 200 mitochondrial and chloroplast genomes from a geographically diverse set of date palms. Here we show that, based on mitochondrial and chloroplast genome-wide genotyping data, the most common cultivated date palms contain 4 haplotypes that appear associated with geographical region of cultivar origin. Conclusions: These data suggest at least 3 and possibly 4 original maternal contributions to the current date palm population and doubles the original number. One new haplotype was found mainly in Tunisia, Algeria and Egypt and the second in Iraq, Iran and Oman. We propose that earliest date palm cultivation occurred independently in at least 3 distinct locations. This discovery will further inform understanding of the history and origins of cultivated date palm.
Genomic Insights into Date Palm Origins
Genes, 2018
With the development of next-generation sequencing technology, the amount of date palm (Phoenix dactylifera L.) genomic data has grown rapidly and yielded new insights into this species and its origins. Here, we review advances in understanding of the evolutionary history of the date palm, with a particular emphasis on what has been learned from the analysis of genomic data. We first record current genomic resources available for date palm including genome assemblies and resequencing data. We discuss new insights into its domestication and diversification history based on these improved genomic resources. We further report recent discoveries such as the existence of wild ancestral populations in remote locations of Oman and high differentiation between African and Middle Eastern populations. While genomic data are consistent with the view that domestication took place in the Gulf region, they suggest that the process was more complex involving multiple gene pools and possibly a seco...
BMC Genomics, 2014
Background: The date palm is one of the oldest cultivated fruit trees. It is critical in many ways to cultures in arid lands by providing highly nutritious fruit while surviving extreme heat and environmental conditions. Despite its importance from antiquity, few genetic resources are available for improving the productivity and development of the dioecious date palm. To date there has been no genetic map and no sex chromosome has been identified. Results: Here we present the first genetic map for date palm and identify the putative date palm sex chromosome. We placed~4000 markers on the map using nearly 1200 framework markers spanning a total of 1293 cM. We have integrated the genetic map, derived from the Khalas cultivar, with the draft genome and placed up to 19% of the draft genome sequence scaffolds onto linkage groups for the first time. This analysis revealed approximately~1.9 cM/Mb on the map. Comparison of the date palm linkage groups revealed significant long-range synteny to oil palm. Analysis of the date palm sex-determination region suggests it is telomeric on linkage group 12 and recombination is not suppressed in the full chromosome. Conclusions: Based on a modified gentoyping-by-sequencing approach we have overcome challenges due to lack of genetic resources and provide the first genetic map for date palm. Combined with the recent draft genome sequence of the same cultivar, this resource offers a critical new tool for date palm biotechnology, palm comparative genomics and a better understanding of sex chromosome development in the palms.
Recent advances in date palm genomics: A comprehensive review
Frontiers in Genetics
As one of the oldest fruit trees of the Arabian peninsula, other Middle-Eastern countries, and also North Africa, the date palm (Phoenix dactylifera L.), is highly significant for the economy of the region. Listed as part of UNESCO’s Intangible Cultural Heritage of Humanity, the date palm is believed to be the first tree cultivated by human beings, and was probably first harvested for its fruit nearly 7,000 years ago. Initial research efforts in date palm genetics focused on understanding the genetic diversity of date palm germplasm collections and its phylogenetic history, both important prerequisites for plant improvement. Despite various efforts, the center of origin of the date palm is still unclear, although genomic studies suggest two probable domestication events: one in the Middle East and the other in North Africa, with two separate gene pools. The current review covers studies related to omics analyses that have sought to decipher the present genetic diversity of the date ...
Egyptian Academic Journal of Biological Sciences, H. Botany
Date palm (Phoenix dactylifera L.) is one of the most ancient cultivated fruit crops belong to family Arecaceae. It is mainly grown in the arid regions of the Middle East and North Africa (Barrow, 1998; Zohary and Hopf, 2000; Chao and Krueger, 2007). Egypt is the world's largest date palm average yield producers, representing about 20% of global production (FAO, 2014). Biodiversity conservation of date palm is a crucial concern to maintain the diverse number of date palm cultivars in Egypt (Rizk et al., 2004). Progress in any genetic conservation scheme relies on understanding the genetic variation existing in the gene pool (
Background and Aims Date palms (Phoenix dactylifera, Arecaceae) are of great economic and ecological value to the oasis agriculture of arid and semi-arid areas. However, despite the availability of a large date palm germplasm spreading from the Atlantic shores to Southern Asia, improvement of the species is being hampered by a lack of information on global genetic diversity and population structure. In order to contribute to the varietal improvement of date palms and to provide new insights on the influence of geographic origins and human activity on the genetic structure of the date palm, this study analysed the diversity of the species. Methods Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 295 date palm accessions ranging from Mauritania to Pakistan using a set of 18 simple sequence repeat (SSR) markers and a plastid minisatellite. Key Results Using a Bayesian clustering approach, the date palm genotypes can be structured into two different gene pools: the first, termed the Eastern pool, consists of accessions from Asia and Djibouti, whilst the second, termed the Western pool, consists of accessions from Africa. These results confirm the existence of two ancient gene pools that have contributed to the current date palm diversity. The presence of admixed genotypes is also noted, which points at gene flows between eastern and western origins, mostly from east to west, following a human-mediated diffusion of the species. Conclusions This study assesses the distribution and level of genetic diversity of accessible date palm resources, provides new insights on the geographic origins and genetic history of the cultivated component of this species, and confirms the existence of at least two domestication origins. Furthermore, the strong genetic structure clearly established here is a prerequisite for any breeding programme exploiting the effective polymorphism related to each gene pool. Key words: Date palm, Arecaceae, genetic diversity, genetic structure, nuclear microsatellite, Phoenix dactylifera, plastid minisatellite, SSR markers.
Tree Genetics & Genomes, 2017
Date palm (Phoenix dactylifera L.) is mainly cultivated for its edible fruit and is of great socioeconomic importance for the populations of arid zones. Analysis of the date palm genetic diversity in the Old World had revealed a strong genetic structure with the existence of two gene pools, one Eastern comprising Asia and Djibouti, and one Western, consisting of North African accessions. So far, mainly date palm populations from countries within the Maghreb and the Middle East were characterized, but no information from the Sahel was included. Here, we present the genetic diversity of date palms from Southeastern Niger. The DNA of 113 date palm accessions were analyzed and compared with a database containing the genetic information of 248 accessions from the Old World. The diversity generated from microsatellite markers was compared to that of the same loci of both the Eastern and Western genetic pools. Our results show that date palms from Southeastern Niger constitute a unique group with a high level of genetic diversity. Moreover, even though this group is included in the Western genetic pool, it shows a specific originality which differentiates it from other Western populations. It also shows one of the lowest admixture levels of the Western pool. Global analysis showed a secondary genetic structure within the Western pool highlighting a new genetic group located in Southeastern Niger that distinguishes itself from the North African group.