Glioma stem cell signaling: therapeutic opportunities and challenges (original) (raw)
Related papers
Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting
Protein & Cell, 2010
Glioblastomas (GBMs) are highly lethal primary brain tumors. Despite current therapeutic advances in other solid cancers, the treatment of these malignant gliomas remains essentially palliative. GBMs are extremely resistant to conventional radiation and chemotherapies. We and others have demonstrated that a highly tumorigenic subpopulation of cancer cells called GBM stem cells (GSCs) promotes therapeutic resistance. We also found that GSCs stimulate tumor angiogenesis by expressing elevated levels of VEGF and contribute to tumor growth, which has been translated into a useful therapeutic strategy in the treatment of recurrent or progressive GBMs. Furthermore, stem cell-like cancer cells (cancer stem cells) have been shown to promote metastasis. Although GBMs rarely metastasize beyond the central nervous system, these highly infiltrative cancers often invade into normal brain tissues preventing surgical resection, and GSCs display an aggressive invasive phenotype. These studies suggest that targeting GSCs may effectively reduce tumor recurrence and significantly improve GBM treatment. Recent studies indicate that cancer stem cells share core signaling pathways with normal somatic or embryonic stem cells, but also display critical distinctions that provide important clues into useful therapeutic targets. In this review, we summarize the current understanding and advances in glioma stem cell research, and discuss potential targeting strategies for future development of anti-GSC therapies.
A review of the role of stem cells in the development and treatment of glioma
Acta Neurochirurgica, 2012
The neurosurgical management of patients with intrinsic glial cancers is one of the most rapidly evolving areas of practice. This has been fuelled by advances in surgical technique not only in cytoreduction but also in drug delivery. Further innovation will depend on a deeper understanding of the biology of the disease and an appreciation of the limitations of current knowledge. Here we review the controversial topic of cancer stem cells applied to glioma to provide neurosurgeons with a working overview. It is now recognised that the adult human brain contains regionally specified cell populations capable of self-renewal that may contribute to tumour growth and maintenance following accumulated mutational change. Tumour cells adapted to maintain growth demonstrate some stem-like characteristics and as such constitute a legitimate therapeutic target. Cellular reprogramming technologies raise the potential of developing stem cells as novel surgical tools to target disease and possibly ameliorate some of the consequences of treatment. Achieving these goals remains a significant challenge to neurosurgical oncologists, not least in challenging how we think about treating brain cancer. This review will briefly examine our understanding of adult stem cells within the brain, the evidence that they contribute to the development of brain tumours as tumour-initiating cells, and the potential implications for therapy. It will also look at the role stem cells may play in the future management of glioma.
Mechanisms of Disease: the role of stem cells in the biology and treatment of gliomas
Nature Clinical Practice Oncology, 2008
RevIew CRITeRIA Information for this Review article was derived from searching the PubMed and MEDLINE databases for articles published up to 1 August 2007. The following search terms were used: "neural stem cells", "neural progenitor cells", "cancer stem cells", "glioma", "glioma models", "stem cell based therapies", and "glioma therapy". Only articles published in English were considered. Special attention was paid to articles with a high impact in the field of cancer and stem cell biology and to articles with outstanding clinical and laboratory evidence. Whenever possible, primary resources have been quoted.
Biological and clinical implications of cancer stem cells in primary brain tumors
Frontiers in Oncology, 2013
Despite therapeutic advances, glioblastoma multiforme (GBM) remains a lethal disease. The infiltrative nature of this disease and the presence of a cellular population resistant to current medical treatments account for the poor prognosis of these patients. Growing evidence indicates the existence of a fraction of cancer cells sharing the functional properties of adult stem cells, including self-renewal and a greater ability to escape chemo-radiotherapy-induced death stimuli. Therefore, these cells are commonly defined as cancer stem cells (GBM-SCs). The initial GBM-SC concept has been challenged, and refined according to the emerging molecular taxonomy of GBM. This allowed to postulate the existence of multiple CSC types, each one driving a given molecular entity. Furthermore, it is becoming increasingly clear that GBM-SCs thrive through a dynamic and bidirectional interaction with the surrounding microenvironment. In this article, we discuss recent advances in GBM-SC biology, mechanisms through which these cells adapt to hostile conditions, pharmacological strategies for selectively killing GBM-SCs, and how novel CSC-associated endpoints have been investigated in the clinical setting.
2021
Gliomas, which account for nearly a quarter of all primary CNS tumors, present significant contemporary therapeutic challenges, particularly the highest-grade variant (glioblastoma multiforme), which has an especially poor prognosis. These difficulties are due to the tumorʹs aggressiveness and the adverse effects of radio/chemotherapy on the brain. Stem cell therapy is an exciting area of research being explored for several medical issues. Neural stem cells, normally present in the subventricular zone and the hippocampus, preferentially migrate to tumor masses. Thus, they have two main advantages: They can minimize the side effects associated with systemic ra-dio/chemotherapy while simultaneously maximizing drug delivery to the tumor site. Another feature of stem cell therapy is the variety of treatment approaches it allows. Stem cells can be genetically engineered into expressing a wide variety of immunomodulatory substances that can inhibit tumor growth. They can also be used as d...