Native fluorescence changes induced by bactericidal agents (original) (raw)

The steady-state and decay characteristics of primary fluorescence from live bacteria

Applied Spectroscopy, 1987

The intrinsic steady-state fluorescence and fluorescence decay of Staphylococcus epidermidis, Pseudomonas fluorescens, Enterobacter cloacae, Escherichia coil, and Bacillus subtilis have been observed. Excitation spectra were obtained while emission at 430, 455, 487 and 514 nm was being monitored. Emission spectra were obtained with the use of excitation wavelengths of 340, 365, 405, 430 and 460 nm. Fluorescence lifetimes were measured at 430, 487, and 514 nm while selective excitation was caused at 340, 405, and 430 nm. The complex nature of the excitation and emission spectra reflects the presence of a number of different fluorophores. Attempts have been made to describe portions of the bacterial fluorescence in terms of the measured fluorescence properties including lifetimes of molecular components known for their widespread occurrence in bacteria and their relatively high quantum yields. Candidate flnorophores which have been considered include the pteridines, the structurally related flavins, and the pyridine coenzymes. The observation that characteristic sets of lifetimes have been obtained for each organism suggests that measurements of fluorescence lifetimes may be helpful in the rapid characterization of bacteria. Results are especially definitive in cases such as Pseudomonas fluorescens, where one marker fluorophore, a pteridine, is produced in large amounts.

Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation

Applied Optics, 2003

Fluorescence emission and excitation spectra were measured over a 7-day period for Bacillus subtilis ͑Bs͒, a spore-forming, and Staphylococcus aureus ͑Sa͒, a nonspore-forming bacteria subjected to conditions of starvation. Initially, the Bs fluorescence was predominantly due to the amino acid tryptophan. Later, a fluorescence band with an emission peak at 410 nm and excitation peak at 345 nm, from dipicolinic acid, appeared. Dipicolinic acid is produced during spore formation and serves as a spectral signature for detection of spores. The intensity of the 410-nm band continued to increase over the next 3 days. The Sa fluorescence was predominantly from tryptophan and did not change over time. In 6 of the 17 Bs specimens studied, an additional band appeared with a weak emission peak at 460 nm and excitation peaks at 250, 270, and 400 nm. The addition of ␤-hydroxybutyric acid to the Bs or the Sa cultures resulted in a two-order of magnitude increase in the 460-nm emission. The addition of Fe 2ϩ quenched the 460 emission, indicating that a source of the 460-nm emission was a siderophore produced by the bacteria. We demonstrate that optical spectroscopy-based instrumentation can detect bacterial spores in real time.

Rapid Detection of Three Common Bacteria Based on Fluorescence Spectroscopy

Sensors, 2022

As an important part of environmental water quality monitoring, efficient bacterial detection has attracted widespread attention. Among them, LIF (laser-induced fluorescence) technology has the characteristics of high efficiency and sensitivity for bacterial detection. To simplify the experimental process of bacterial detection, fluorescence emission spectra of E. coli (Escherichia coli) and its deactivated controls, K. pneumoniae (Klebsiella pneumoniae) and S. aureus (Staphylococcus aureus), were analyzed with fluorescence excitation by a 266 nm laser. By analyzing the results, it was found that the dominant fluorescence peaks of bacterial solutions at 335~350 nm were contributed by tryptophan, and the subfluorescence peaks at 515.9 nm were contributed by flavin; besides, K. pneumoniae and S. aureus had their own fluoresces characteristics, such as tyrosine contributing to sub-fluorescence peaks at 300 nm. The three species of bacteria can be differentiated with whole fluorescence ...

Changes in NOM Fluorescence Caused by Chlorination and their Associations with Disinfection by-Products Formation

Environmental Science & Technology, 2009

Relationships between the formation of disinfection byproduct (DBPs) and changes of the fluorescence of natural organic matter (NOM) in chlorinated water were quantified using two fluorescence indexes. They were defined as the change of the wavelength that corresponds to 50% of the maximum intensity of fluorescence (∆λ em 0.5 ) and the differential ratio of fluorescence intensities measured at 500 and 450 nm (∆(I 500 /I 450 )). Although variations of chlorine doses, reaction times and temperatures affected the kinetics of chlorine consumption and DBPs release, correlations between chlorine consumption, concentrations, and speciation of trihalomethanes, haloacetonitriles, haloacetic acids and, on the other hand, ∆(I 500 /I 450 ) and ∆λ em 0.5 values remained unaffected by chlorination conditions and, to some extent, NOM properties. These results allow developing a fluorescence-based approach to monitor DBPs formation in drinking water. FIGURE 7. Correlations between ∆(I 500 /I 450 ) values and concentrations of TTHM (a), , and THAA (c). Chlorinated Ancipa and Potomac waters at pH 7.0, chlorine to DOC ratios from 0.25 to 2.00 mg/mg, reaction times from 10 to 3 days, and temperatures from 3 to 34°C.

Fluorescence Characterization of Clinically-Important Bacteria

2013

Healthcare-associated infections (HCAI/HAI) represent a substantial threat to patient health during hospitalization and incur billions of dollars additional cost for subsequent treatment. One promising method for the detection of bacterial contamination in a clinical setting before an HAI outbreak occurs is to exploit native fluorescence of cellular molecules for a hand-held, rapid-sweep surveillance instrument. Previous studies have shown fluorescence-based detection to be sensitive and effective for food-borne and environmental microorganisms, and even to be able to distinguish between cell types, but this powerful technique has not yet been deployed on the macroscale for the primary surveillance of contamination in healthcare facilities to prevent HAI. Here we report experimental data for the specification and design of such a fluorescence-based detection instrument. We have characterized the complete fluorescence response of eleven clinically-relevant bacteria by generating excitation-emission matrices (EEMs) over broad wavelength ranges. Furthermore, a number of surfaces and items of equipment commonly present on a ward, and potentially responsible for pathogen transfer, have been analyzed for potential issues of background fluorescence masking the signal from contaminant bacteria. These include bedside handrails, nurse call button, blood pressure cuff and ward computer keyboard, as well as disinfectant cleaning products and microfiber cloth. All examined bacterial strains exhibited a distinctive double-peak fluorescence feature associated with tryptophan with no other cellular fluorophore detected. Thus, this fluorescence survey found that an emission peak of 340nm, from an excitation source at 280nm, was the cellular fluorescence signal to target for detection of bacterial contamination. The majority of materials analysed offer a spectral window through which bacterial contamination could indeed be detected. A few instances were found of potential problems of background fluorescence masking that of bacteria, but in the case of the microfiber cleaning cloth, imaging techniques could morphologically distinguish between stray strands and bacterial contamination.

Elucidation of Cell Killing Mechanism by Comparative Analysis of Photoreactions on Different Types of Bacteria

Photochemistry and Photobiology, 2012

The mechanism of biocidal action of nano titania on Escherichia coli and Staphylococcus aureus has been evaluated by various biochemical techniques like lipid peroxidation, hydrolysis of orthonitrophenol b-D D-galactopyranoside, estimation of proteinamino acid and bacterial nucleic acids leakage into solution, in addition to morphology studies by electron microscopy (TEM and SEM) and K + ion leakage by inductively coupled plasma optical emission spectrometry. The active anatase phase of nano titania has been synthesized by sol-gel and pulverization techniques to obtain particle sizes averaging around 11 nm. The nano semiconductor with a bandgap of 3.2 eV responds well to the UV source to liberate reactive oxygen species (ROS). Gram negative bacteria easily succumb to the ROS at a faster rate than gram-positive bacteria with an observable difference in the mode of attack. The use of analytical techniques revealed the release of peroxidized lipid (26 nmol mL)1) and protein content (370 lg mL)1) with a K + ion concentration of 22 000 ppb on complete destruction of E. coli.

The synergistic effect of visible light and gentamycin on Pseudomona aeruginosa microorganisms

Journal of visualized experiments : JoVE, 2013

Recently there were several publications on the bactericidal effect of visible light, most of them claiming that blue part of the spectrum (400 nm-500 nm) is responsible for killing various pathogens(1-5). The phototoxic effect of blue light was suggested to be a result of light-induced reactive oxygen species (ROS) formation by endogenous bacterial photosensitizers which mostly absorb light in the blue region(4,6,7). There are also reports of biocidal effect of red and near infra red(8) as well as green light(9). In the present study, we developed a method that allowed us to characterize the effect of high power green (wavelength of 532 nm) continuous (CW) and pulsed Q-switched (Q-S) light on Pseudomonas aeruginosa. Using this method we also studied the effect of green light combined with antibiotic treatment (gentamycin) on the bacteria viability. P. aeruginosa is a common noscomial opportunistic pathogen causing various diseases. The strain is fairly resistant to various antibiot...

Optimizing the bactericidal effect of pulsed blue light on Propionibacterium acnes - A correlative fluorescence spectroscopy study

Journal of Photochemistry and Photobiology B-biology, 2020

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus

International journal of antimicrobial agents, 2015

Bioluminescence imaging is used for longitudinal evaluation of bacteria in live animals. Clear relations exist between bacterial numbers and their bioluminescence. However, bioluminescence images of Staphylococcus aureus Xen29, S. aureus Xen36 and Escherichia coli Xen14 grown on tryptone soy agar in Etests demonstrated increased bioluminescence at sub-MICs of different antibiotics. This study aimed to further evaluate the influence of antibiotic pressure on bioluminescence in S. aureus Xen29. Bioluminescence of S. aureus Xen29, grown planktonically in tryptone soy broth, was quantified in the absence and presence of different concentrations of vancomycin, ciprofloxacin, erythromycin or chloramphenicol and was related to expression of the luxA gene under antibiotic pressure measured using real-time PCR. In the absence of antibiotics, staphylococcal bioluminescence increased over time until a maximum after ca. 6h of growth, and subsequently decreased to the detection threshold after 2...

Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5′-phosphate photolysis

Journal of Photochemistry and Photobiology B: Biology, 2017

The light sensitive compound riboflavin-5′-phosphate (or flavin mononucleotide, FMN) generates reactive oxygen species (ROS) upon photo-irradiation. FMN is required by all flavoproteins because it is a cofactor of biological blue-light receptors. The photochemical effects of FMN after irradiation by blue or violet light on the inactivation of Staphylococcus aureus strains, including a methicillin-resistant strain (MRSA), were investigated in this study. Upon blue-or violet-light photo-treatment, FMN was shown to inactivate S. aureus due to the generated ROS. Effective bacterial inactivation can be achieved by FMN photolysis without an exogenous electron provider. Inactivation rates of 94.9 and 95.2% in S. aureus and MRSA, respectively, can be reached by blue light irradiation (2.0 mW/cm 2 ) with 120 μM FMN for 120 min. A lower FMN concentration and a shorter time are required to reach similar effects by violet light irradiation. Inactivation rates of 96.3 and 97.0% in S. aureus and MRSA, respectively, can be reached by violet light irradiation (1.0 mW/cm 2 ) with 30 μM FMN for 30 min. The sensitivity of the inherent photosensitizers is lower under blue-light irradiation. A long exposure photolytic treatment of FMN by blue light is required to inactivate S. aureus. Violet light was found to be more efficient in S. aureus inactivation at the same radiant intensity. FMN photolysis with blue or violet light irradiation enhanced the inactivation rates of S. aureus and MRSA. FMN photochemical treatment could be a supplemental technique in hygienic decontamination processes.