Kinetic analysis and test-retest variability of the radioligand 11C-PK11195 binding to TSPO in the human brain - a PET study in control subjects (original) (raw)
Related papers
Reference and target region modeling of [11C]-(R)-PK11195 brain studies
Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 2007
PET with [(11)C]-(R)-PK11195 is currently the modality of choice for the in vivo imaging of microglial activation in the human brain. In this work we devised a supervised clustering procedure and a new quantification methodology capable of producing binding potential (BP) estimates quantitatively comparable with those derived from plasma input with robust quantitative implementation at the pixel level. The new methodology uses predefined kinetic classes to extract a gray matter reference tissue without specific tracer binding and devoid of spurious signals (in particular, blood pool and muscle). Kinetic classes were derived from an historical database of 12 healthy control subjects and from 3 patients with Huntington's disease. BP estimates were obtained using rank-shaping exponential spectral analysis (RS-ESA) (both plasma and reference input) and the simplified reference tissue model (SRTM). Comparison between plasma- derived BPs and those produced with the new reference metho...
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2017
The 18 kDa translocator protein (TSPO) is a marker of microglia activation in the central nervous system and represents the main target of radiotracers for the in vivo quantification of neuroinflammation with positron emission tomography (PET). TSPO PET is methodologically challenging given the heterogeneous distribution of TSPO in blood and brain. Our previous studies with the TSPO tracers [(11)C]PBR28 and [(11)C]PK11195 demonstrated that a model accounting for TSPO binding to the endothelium improves the quantification of PET data. Here, we performed a validation of the kinetic model with the additional endothelial compartment through a displacement study. Seven subjects with schizophrenia, all high-affinity binders, underwent two [(11)C]PBR28 PET scans before and after oral administration of 90 mg of the TSPO ligand XBD173. The addition of the endothelial component provided a signal compartmentalization much more consistent with the underlying biology, as only in this model, the ...
Maps of receptor binding parameters in the human brain ? a kinetic analysis of PET measurements
European Journal of Nuclear Medicine, 1990
A kinetic method is described for the estimation of neuroreceptor density as well as the rate constants for association and dissociation of rapidly equilibrating radioligands. The method is exemplified by positron emission tomographic measurements of the human brain using 11C-raclopride, a D2 dopamine receptor antagonist, and 1 a C-Ro 15-1788, a benzodiazepine receptor antagonist. Using a linear non iterative algorithm, regional binding characteristics were calculated and displayed pixel by pixel in brain maps. Data from repeated experiments on the same subject with different amounts of the unlabeled ligand were utilized. The binding characteristics were determined according to a two step procedure in which the time course of the free radioligand concentration was estimated from a reference region considered to be free of specific receptor binding sites. Alternative methods to determine the concentration of free radioligand are discussed.
Development of a tracer kinetic plasma input model for (R)-[11C]PK11195 brain studies
Journal of Cerebral Blood Flow & Metabolism, 2005
PK11195 ([1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl]-3-isoquinoline carboxamide) is a ligand for the peripheral benzodiazepine receptor, which, in the brain, is mainly expressed on activated microglia. Using both clinical studies and Monte Carlo simulations, the aim of this study was to determine which tracer kinetic plasma input model best describes (R)-[ 11 C]PK11195 kinetics. Dynamic positron emission tomography (PET) scans were performed on 13 subjects while radioactivity in arterial blood was monitored online. Discrete blood samples were taken to generate a metabolite corrected plasma input function. One-tissue, two-tissue irreversible, and two-tissue reversible compartment models, with and without fixing K 1 /k 2 ratio, k 4 or blood volume to whole cortex values, were fitted to the data. The effects of fixing parameters to incorrect values were investigated by varying them over a physiologic range and determining accuracy and reproducibility of binding potential and volume of distribution using Monte Carlo simulations. Clinical data showed that a two-tissue reversible compartment model was optimal for analyzing (R)-[ 11 C]PK11195 PET brain studies. Simulations showed that fixing the K 1 /k 2 ratio of this model provided the optimal trade-off between accuracy and reproducibility. It was concluded that a twotissue reversible compartment model with K 1 /k 2 fixed to whole cortex value is optimal for analyzing (R)-[ 11 C]PK11195 PET brain studies.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2012
18 F]-FEPPA binds to the 18-kDa translocator protein (TSPO) and is used in positron emission tomography (PET) to detect microglial activation. However, quantitative interpretations of the PET signal with new generation TSPO PET radioligands are confounded by large interindividual variability in binding affinity. This presents as a trimodal distribution, reflecting high-affinity binders (HABs), low-affinity binder (LAB), and mixed-affinity binders (MABs). Here, we show that one polymorphism (rs6971) located in exon 4 of the TSPO gene, which results in a nonconservative amino-acid substitution from alanine to threonine (Ala147Thr) in the TSPO protein, predicts [ 18 F]-FEPPA total distribution volume in human brains. In addition, [ 18 F]-FEPPA exhibits clearly different features in the shape of the time activity curves between genetic groups. Testing for the rs6971 polymorphism may allow quantitative interpretation of TSPO PET studies with new generation of TSPO PET radioligands.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 2017
For PET imaging of 18-kDa translocator protein (TSPO), a biomarker of neuroinflammation, most second-generation radioligands are sensitive to the single nucleotide polymorphism rs6971; however, this is probably not the case for the prototypical agent (11)C-PK11195 ((11)C-labeled N-butan-2-yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide), which has a relatively lower signal-to-noise ratio. We recently found that (11)C-ER176 ((11)C-(R)-N-sec-butyl-4-(2-chlorophenyl)-N-methylquinazoline-2-carboxamide), a new analog of (11)C-(R)-PK11195, showed little sensitivity to rs6971 when tested in vitro and had high specific binding in monkey brain. This study sought, first, to determine whether the sensitivity of (11)C-ER176 in humans is similar to the low sensitivity measured in vitro and, second, to measure the nondisplaceable binding potential (BPND, or the ratio of specific-to-nondisplaceable uptake) of (11)C-ER176 in human brain. Nine healthy volunteers-3 high-affinity binders (HAB...
Journal of Neuroinflammation, 2012
Background: We studied the distribution and expression of translocator protein in the human brain using 11 C-[R]-PK-11195 positron emission tomography (PK11195 PET) and evaluated age-related changes. Methods: A dynamic PK11195 PET scan was performed in 15 normal healthy adults (mean age: 29 ±8.5 years (range: 20 to 49); 7 males) and 10 children (mean age: 8.8 ±5.2 years (range: 1.2 to 17); 5 males), who were studied for potential neuroinflammation but showed no focally increased PK11195 binding. The PET images were evaluated by calculating standard uptake values and regional binding potential, based on a simplified reference region model, as well as with a voxel-wise analysis using statistical parametric mapping.
Positron emission tomography quantification of [11C]-(+)-PHNO binding in the human brain
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2007
The kinetic modeling of [11C]-(+)-PHNO binding to the dopamine D2/3 receptors in six human volunteers using positron emission tomography (PET) is described. [11C]-(+)-PHNO is the first agonist radioligand for the D2/3 in humans and as expected showed high uptake in caudate, putamen, globus pallidus (GP) and ventral striatum, and low uptake in cerebellum. A two-tissue compartment model (2CM) with four parameters was necessary to adequately fit time-activity data in all regions. Although a 2CM provided an excellent estimation of total distribution volumes, which were highly correlated with those obtained with the invasive Logan approach, it provided a poor identification of the k3/k4 ratios. Coupling K1/k2 between brain regions (Method C) or fixing K1/k2 to the value obtained in cerebellum (Method D) enabled more stable estimates of k3/k4 as compared with an unconstrained 2CM. The k3/k4 obtained with Method D ranged from 0.12+/-0.03 in cerebellum to 3.93+/-0.77 in GP and were similar ...
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2017
There is a great need for a non-invasive methodology enabling the quantification of translocator protein overexpression in PET clinical imaging. [(18)F]DPA-714 has emerged as a promising translocator protein radiotracer as it is fluorinated, highly specific and returned reliable quantification using arterial input function. Cerebellum gray matter was proposed as reference region for simplified quantification; however, this method cannot be used when inflammation involves cerebellum. Here we adapted and validated a supervised clustering (supervised clustering algorithm (SCA)) for [(18)F]DPA-714 analysis. Fourteen healthy subjects genotyped for translocator protein underwent an [(18)F]DPA-714 PET, including 10 with metabolite-corrected arterial input function and three for a test-retest assessment. Two-tissue compartmental modelling provided [Formula: see text] estimates that were compared to either [Formula: see text] or [Formula: see text] generated by Logan analysis (using supervis...