Cloning, purification, crystallization and preliminary X-ray analysis of ESX-1-secreted protein regulator (EspR) from Mycobacterium tuberculosis (original) (raw)
Related papers
1.55 Å resolution X-ray crystal structure of Rv3902c from Mycobacterium tuberculosis
Acta crystallographica. Section F, Structural biology communications, 2014
The crystallographic structure of the Mycobacterium tuberculosis (TB) protein Rv3902c (176 residues; molecular mass of 19.8 kDa) was determined at 1.55 Å resolution. The function of Rv3902c is unknown, although several TB genes involved in bacterial pathogenesis are expressed from the operon containing the Rv3902c gene. The unique structural fold of Rv3902c contains two domains, each consisting of antiparallel β-sheets and α-helices, creating a hand-like binding motif with a small binding pocket in the palm. Structural homology searches reveal that Rv3902c has an overall structure similar to that of the Salmonella virulence-factor chaperone InvB, with an r.m.s.d. for main-chain atoms of 2.3 Å along an aligned domain.
Proceedings of the National Academy of Sciences, 2011
EspR is a transcriptional regulator that activates the ESX-1 secretion system during Mycobacterium tuberculosis infection and is critical for pathogenesis. It is unique among DNA-binding proteins as it is secreted as part of a feedback regulatory loop that serves to mitigate transcriptional activity. Here we report the crystal structure of a functional EspR dimer at 2.5-Å resolution. The amino-terminal half of EspR is a helix-turn-helix (HTH) DNA-binding domain and the carboxy terminus consists of a dimerization domain with similarity to the SinR:SinI sporulation regulator of Bacillus subtilis . Surprisingly, the HTH domains of EspR are arranged in an unusual conformation in which they are splayed at an oblique angle to each other, suggesting that EspR binds DNA in a profoundly different way than most other known HTH regulators. By mapping the EspR binding sites in the espACD promoter, using both in vivo and in vitro binding assays, we show that the EspR operators are located unusua...
Protein science : a publication of the Protein Society, 2010
Mycobacterium tuberculosis encodes five gene clusters (ESX-1 to ESX-5) for Type VII protein secretion systems that are implicated in mycobacterial pathogenicity. Substrates for the secretion apparatus are encoded within the gene clusters and in additional loci that lack the components of the secretion apparatus. The best characterized substrates are the ESX complexes, 1:1 heterodimers of ESAT-6 and CFP-10, the prototypical member that has been shown to be essential for Mycobacterium tuberculosis pathogenesis. We have determined the structure of EsxRS, a homolog of EsxGH of the ESX-3 gene cluster, at 1.91 Å resolution. The EsxRS structure is composed of two four-helix bundles resulting from the 3D domain swapping of the C-terminal domain of EsxS, the CFP-10 homolog. The four-helix bundles at the extremities of the complex have a similar architecture to the structure of ESAT-6·CFP-10 (EsxAB) of ESX-1, but in EsxRS a hinge loop linking the α-helical domains of EsxS undergoes a loop-to-...
Crystal Structure of the Transcriptional Regulator Rv0678 of Mycobacterium tuberculosis
Journal of Biological Chemistry, 2014
Background: The expression of the Mycobacterium tuberculosis MmpS5-MmpL5 transporter is controlled by the MarR-like transcriptional regulator Rv0678. Results: Rv0678 forms a dimeric two-domain molecule with the architecture similar to members of the MarR family of transcriptional regulators. Conclusion: Rv0678 is distinct in that its DNA-binding and dimerization domains cooperate to bind an inducing ligand. Significance: These findings suggest a mechanism for ligand and regulator derepression.
Rv0241c (HtdX) is a putative (3R)-hydroxyacyl-CoA dehydratase of Mycobacterium tuberculosis. The htdX gene belongs to a conserved operon and is expressed in mycobacteria in the presence of several fatty-acid synthase II drugs. To elucidate the structure of HtdX, the protein was cloned, overexpressed, purified to homogeneity and crystallized. The protein was crystallized from two conditions: (i) 3 M sodium chloride, 0.1 M Na HEPES pH 8.0 and (ii) 2.5 M sodium chloride, 0.1 M Tris-HCl pH 8.5. A complete diffraction data set was collected from crystals from both conditions. The crystal from the first condition diffracted to 2.3 Å resolution and belonged to space group I4 1 , with unit-cell parameters a = b = 61.51, c = 143.81 Å . Crystals from the second condition diffracted to 3.
Acta crystallographica, 2006
CRP/FNR family members are transcription factors that regulate the transcription of many genes in Escherichia coli and other organisms. Mycobacterium tuberculosis H37Rv contains a probable CRP/FNR homologue encoded by the open reading frame Rv3676. The deletion of this gene is known to cause growth defects in cell culture, in bone marrow-derived macrophages and in a mouse model of tuberculosis. The mycobacterial gene Rv3676 shares $32% sequence identity with prototype E. coli CRP. The structure of the protein might provide insight into transcriptional regulation in the pathogen by this protein. The M. tuberculosis CRP/FNR transcription regulator was crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 54.1, b = 84.6, c = 101.2 Å. The crystal diffracted to a resolution of 2.9 Å. Matthews coefficient and self-rotation function calculations reveal the presence of two monomers in the asymmetric unit.
Molecular Microbiology, 2011
The human pathogen Mycobacterium tuberculosis requires the ESX-1 secretion system for full virulence. EspR plays a key role in ESX-1 regulation via direct binding and transcriptional activation of the espACD operon. Here, we describe the crystal structures of EspR, a C-terminally truncated form, EspRD10, as well as an EspR-DNA complex. EspR forms a dimer with each monomer containing an N-terminal helix-turnhelix DNA binding motif and an atypical C-terminal dimerization domain. Structural studies combined with footprinting experiments, atomic force microscopy and molecular dynamic simulations allow us to propose a model in which a dimer of EspR dimers is the minimal functional unit with two subunits binding two consecutive major grooves. The other two DNA binding domains are thus free to form higher-order oligomers and to bridge distant DNA sites in a cooperative way. These features are reminiscent of nucleoid-associated proteins and suggest a more general regulatory role for EspR than was previously suspected.
Acta Crystallographica Section D Biological Crystallography, 2004
Dihydrodipicolinate synthase (DHDPS) is an oligomeric enzyme that catalyzes the first committed step of the lysine-biosynthesis pathway in plants and bacteria, which yields essential building blocks for cell-wall and protein synthesis. DHDPS is therefore of interest to drug-discovery research as well as to studies that probe the importance of quaternary structure to protein function, stability and dynamics. Accordingly, DHDPS from the psychrophilic (colddwelling) organism Shewanella benthica (Sb-DHDPS) was cloned, expressed, purified and crystallized. The best crystals of Sb-DHDPS were grown in 200 mM ammonium sulfate, 100 mM bis-tris pH 5.0-6.0, 23-26%(w/v) PEG 3350, 0.02%(w/v) sodium azide and diffracted to beyond 2.5 Å resolution. Processing of diffraction data to 2.5 Å resolution resulted in a unit cell with space group P2 1 2 1 2 1 and dimensions a = 73.1, b = 84.0, c = 143.7 Å . These studies of the first DHDPS enzyme to be characterized from a bacterial psychrophile will provide insight into the molecular evolution of enzyme structure and dynamics.
Journal of Structural and Functional Genomics, 2009
Tuberculosis (TB) is a major global health threat caused by Mycobacterium tuberculosis (Mtb). It is further fueled by the HIV pandemic and by increasing incidences of multidrug resistant Mtb-strains. Rv2827c, a hypothetical protein from Mtb, has been implicated in the survival of Mtb in the macrophages of the host. The three-dimensional structure of Rv2827c has been determined by the three-wavelength anomalous diffraction technique using bromide-derivatized crystals and refined to a resolution of 1.93 Å. The asymmetric unit of the orthorhombic crystals contains two independent protein molecules related by a non-crystallographic translation. The tertiary structure of Rv2827c comprises two domains: an N-terminal domain displaying a winged helix topology and a C-terminal domain, which appears to constitute a new and unique fold. Based on structural homology considerations and additional biochemical evidence, it could be established that Rv2827c is a DNA-binding protein. Once the understanding of the structure-function relationship of Rv2827c extends to the function of Rv2827c in vivo, new clues for the rational design of novel intervention strategies may be obtained.