On Properties of the Sturm-Liouville Operator with Degenerate Boundary Conditions (original) (raw)
Related papers
On two-point boundary value problems for the Sturm-Liouville operator
arXiv: Spectral Theory, 2015
In this paper, we study spectral problems for the Sturm-Liouville operator with arbitrary complexvalued potential q(x) and two-point boundary conditions. All types of mentioned boundary conditions are considered. We ivestigate in detail the completeness property and the basis property of the root function system.
Boundary Value Problems, Integral Equations and Related Problems, 2010
We consider the spectral problem generated by the Sturm-Liouville equation with an arbitrary complex-valued potential q(x) ∈ L 2 (0, π) and irregular boundary conditions. We establish necessary and sufficient conditions for a set of complex numbers to be the spectrum of such an operator. In the present paper, we consider the eigenvalue problem for the Sturm-Liouvulle equation u ′′ − q(x)u + λu = 0 (1) on the interval (0, π) with the boundary conditions u ′ (0) + (−1) θ u ′ (π) + bu(π) = 0, u(0) + (−1) θ+1 u(π) = 0, (2) where b is a complex number, θ = 0, 1, and the function q(x) is an arbitrary complex-valued function of the class L 2 (0, π). Denote by c(x, µ), s(x, µ) (λ = µ 2) the fundamental system of solutions to (1) with the initial conditions c(0, µ) = s ′ (0, µ) = 1, c ′ (0, µ) = s(0, µ) = 0. The following identity is well known c(x, µ)s ′ (x, µ) − c ′ (x, µ)s(x, µ) = 1. (3) Simple calculations show that the characteristic equation of (1), (2) can be reduced to the form ∆(µ) = 0, where
Hacettepe Journal of Mathematics and Statistics, 2019
The spectral problem\[-y''+q(x)y=\lambda y,\ \ \ \ 0<x<1\]\[y(0)=0, \quad y'(0)=\lambda(ay(1)+by'(1)),\]is considered, where lambda\lambdalambda is a spectral parameter, q(x)inL1(0,1)q(x)\in{{L}_{1}}(0,1)q(x)inL1(0,1) is a complex-valued function, aaa and bbb are arbitrary complex numbers which satisfy the condition ∣a∣+∣b∣ne0|a|+|b|\ne 0∣a∣+∣b∣ne0. We study the spectral properties (existence of eigenvalues, asymptotic formulae for eigenvalues and eigenfunctions, minimality and basicity of the system of eigenfunctions in Lp(0,1){{L}_{p}}(0,1)Lp(0,1)) of the above-mentioned Sturm-Liouville problem.
On the spectrum of an irregular Sturm-Liouville problem
Doklady Mathematics, 2010
We consider the spectral problem generated by the Sturm-Liouville equation with an arbitrary complex-valued potential q(x) ∈ L 2 (0, π) and irregular boundary conditions. We establish necessary and sufficient conditions for a set of complex numbers to be the spectrum of such an operator.
Boundary Value Problems, 2013
This work aims to examine a Sturm-Liouville operator with a piece-wise continuous coefficient and a spectral parameter in boundary condition. The orthogonality of the eigenfunctions, realness and simplicity of the eigenvalues are investigated. The asymptotic formula of the eigenvalues is found, and the resolvent operator is constructed. It is shown that the eigenfunctions form a complete system and the expansion formula with respect to eigenfunctions is obtained. Also, the evolution of the Weyl solution and Weyl function is discussed. Uniqueness theorems for the solution of the inverse problem with Weyl function and spectral data are proved.