Natural Killer Cell Dependent Within-Host Competition Arises during Multiple MCMV Infection: Consequences for Viral Transmission and Evolution (original) (raw)
Related papers
The Journal of general virology, 2015
Infection with multiple genetically distinct strains of pathogen is common and can lead to positive (complementation) or negative (competitive) within-host interactions. These interactions can alter aspects of the disease process and help shape pathogen evolution. Infection of the host with multiple strains of cytomegalovirus (CMV) infection occurs frequently in humans and mice. Profound, NK cell mediated (apparent) competition, has been identified in C57BL/6 mice and prevented the replication and shedding of certain co-infecting CMV strains. However the frequency of such strong competition has not been established. Other within-host interactions such as complementation or alternative forms of competition remain possible. Moreover high rates of recombination in both human CMV (HCMV) and murine CMV (MCMV) suggest prolonged periods of viral co-replication, rather than strong competitive suppression. An established model was employed to investigate the different possible outcomes of mu...
Pathogens, 2021
As the largest herpesviruses, the 230 kb genomes of cytomegaloviruses (CMVs) have increased our understanding of host immunity and viral escape mechanisms, although many of the annotated genes remain as yet uncharacterised. Here we identify the m15 locus of murine CMV (MCMV) as a viral modulator of natural killer (NK) cell immunity. We show that, rather than discrete transcripts from the m14, m15 and m16 genes as annotated, there are five 3′-coterminal transcripts expressed over this region, all utilising a consensus polyA tail at the end of the m16 gene. Functional inactivation of any one of these genes had no measurable impact on viral replication. However, disruption of all five transcripts led to significantly attenuated dissemination to, and replication in, the salivary glands of multiple strains of mice, but normal growth during acute infection. Disruption of the m15 locus was associated with heightened NK cell responses, including enhanced proliferation and IFNγ production. D...
MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo
Nature Immunology, 2002
The susceptibility of certain inbred mouse strains to murine cytomegalovirus (MCMV) is related to their inability to generate a strong natural killer (NK) cell response. We addressed here whether the MCMV susceptibility of the BALB/c strain is due to viral functions that control NK cell activation in a strain-specific manner. MCMV expresses two proteins, gp48 and gp40, that are encoded
Journal of General Virology, 2006
As with human cytomegalovirus (HCMV) infection of humans, murine CMV (MCMV) infection is widespread in its natural host, the house mouse Mus domesticus, and may consist of mixed infection with different CMV isolates. The incidence and mechanisms by which mixed infection occurs in free-living mice are unknown. This study used two approaches to determine whether mixed infection with MCMV could be established in laboratory mice. The first utilized two naturally occurring MCMV strains, N1 and G4, into which the lacZ gene was inserted by homologous recombination. The lacZ gene was used to track recombinant and parental viruses in simultaneously coinfected mice. In the second approach, a real-time quantitative PCR (qPCR) assay was used to detect viral immediate-early 1 (ie1) gene sequences in mice successively coinfected with G4 and then with the K181 MCMV strain. In both systems, mixed infection was detected in the salivary glands and lungs of experimentally infected mice. MCMV-specific antibody in sera and G4 IE1-specific cytotoxic lymphocyte responses in the spleens of twice-infected mice did not prevent reinfection. Finally, the prevalence of mixed infection in free-living mice trapped in four Australian locations was investigated using real-time qPCR to detect ie1 DNA sequences of N1, G4 and K181. Mixed infection with MCMVs containing the G4 and K181 ie1 sequences was detected in the salivary glands of 34?2 % of trapped mice. The observations that mixed infections are common in free-living M. domesticus and are acquired by immunocompetent mice through simultaneous or successive infections are important for vaccine development.
Nature Genetics, 2005
Experimental infection with mouse cytomegalovirus (MCMV) has been used to elucidate the intricate host-pathogen mechanisms that determine innate resistance to infection. Linkage analyses in F 2 progeny from MCMV-resistant MA/My (H2 k ) and MCMV-susceptible BALB/c (H2 d ) and BALB.K (H2 k ) mouse strains indicated that only the combination of alleles encoded by a gene in the Klra (also called Ly49) cluster on chromosome 6, and one in the major histocompatibility complex (H2) on chromosome 17, is associated with virus resistance. We found that natural killer cell-activating receptor Ly49P specifically recognized MCMV-infected cells, dependent on the presence of the H2 k haplotype. This binding was blocked using antibodies to H-2D k but not antibodies to H-2K k . These results are suggestive of a new natural killer cell mechanism implicated in MCMV resistance, which depends on the functional interaction of the Ly49P receptor and the major histocompatibility complex class I molecule H-2D k on MCMV-infected cells.
The Journal of Immunology, 2006
CMV can cause life-threatening disease in immunodeficient hosts. Experimental infection in mice has revealed that the genetically determined natural resistance to murine CMV (MCMV) may be mediated either by direct recognition between the NK receptor Ly49H and the pathogen-encoded glycoprotein m157 or by epistatic interaction between Ly49P and the host MHC H-2D k . Using stocks of wild-derived inbred mice as a source of genetic diversity, we found that PWK/Pas (PWK) mice were naturally resistant to MCMV. Depletion of NK cells subverted the resistance. Analysis of backcrosses to susceptible BALB/c mice revealed that the phenotype was controlled by a major dominant locus effect linked to the NK gene complex. Haplotype analysis of 41 polymorphic markers in the Ly49h region suggested that PWK mice may share a common ancestral origin with C57BL/6 mice; in the latter, MCMV resistance is dependent on Ly49H-m157 interactions. Nevertheless, PWK mice retained viral resistance against m157defective mutant MCMV. These results demonstrate the presence of yet another NK cell-dependent viral resistance mechanism, named Cmv4, which most likely encodes for a new NK activating receptor. Identification of Cmv4 will expand our understanding of the specificity of the innate recognition of infection by NK cells.
Journal of Experimental Medicine, 2001
Antiviral roles of natural killer (NK) cell subsets were examined in C57BL/6 mice infected with murine cytomegalovirus (MCMV) and other viruses, including lymphocytic choriomeningitis virus (LCMV), vaccinia virus (VV), and mouse hepatitis virus (MHV). Each virus vigorously induced an NK cell infiltrate into the peritoneal cavity and liver, causing some redistributions of NK cell subsets defined by monoclonal antibody (mAb) directed against Ly49A, C/I, D, and G2. Striking results were seen with a mAb (1F8) reactive with the positively signaling molecule Ly49H, present in MCMV-resistant C57BL/6 mice. mAb 1F8 also stains Ly49 C and I, but exclusion of those reactivities with mAb 5E6, which recognizes Ly49 C and I, indicated that Ly49H+ cells infiltrated the peritoneal cavity and liver and were particularly effective at synthesizing interferon γ. Depletion of 1F8+ but not 5E6+ cells in vivo by mAb injections enhanced MCMV titers by 20-1,000-fold in the spleen and approximately fivefold ...