A Designed Functional Metalloenzyme that Reduces O(2) to H(2)O with Over One Thousand Turnovers (original) (raw)

Constructing manmade enzymes for oxygen activation

Dalton Transactions, 2013

Natural oxygenases catalyse the insertion of oxygen into an impressive array of organic substrates with exquisite efficiency, specificity and power unparalleled by current biomimetic catalysts. However, their true potential to provide tailor-made oxygenation catalysts remains largely untapped, perhaps a consequence of the evolutionary complexity imprinted into their three-dimensional structures through millennia of exposure to parallel selective pressures. In this perspective we describe how we may take inspiration from natural enzymes to design manmade oxygenase enzymes free from such complexity. We explore the differing chemistries accessed by natural oxygenases and outline a stepwise methodology whereby functional elements key to oxygenase catalysis are assembled within artificially designed protein scaffolds. † Electronic supplementary information (ESI) available. See

S11/6 Looking for the minimum common denominator in haem-copper oxygen reductases: Towards a unified catalytic mechanism

Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2008

Haem-copper oxygen reductases are transmembrane protein complexes that reduce dioxygen to water and pump protons across the mitochondrial or periplasmatic membrane, contributing to the transmembrane difference of electrochemical potential. Seven years ago we proposed a classification of these enzymes into three different families (A, B and C), based on the amino acid residues of their proton channels and amino acid sequence comparison, later supported by the so far identified characteristics of the catalytic centre of members from each family. The three families have in common the same general structural fold of the catalytic subunit, which contains the same or analogous prosthetic groups, and proton channels. These observations raise the hypothesis that the mechanisms for dioxygen reduction, proton pumping and the coupling of the two processes may be the same for all these enzymes. Under this hypothesis, they should be performed and controlled by the same or equivalent elements/events, and the identification of retained elements in all families will reveal their importance and may prompt the definition of the enzyme operating mode. Thus, we believe that the search for a minimum common denominator has a crucial importance, and in this article we highlight what is already established for the haem-copper oxygen reductases and emphasize the main questions still unanswered in a comprehensive basis.

Looking for the minimum common denominator in haem–copper oxygen reductases: Towards a unified catalytic mechanism

Biochimica Et Biophysica Acta-bioenergetics, 2008

Haem-copper oxygen reductases are transmembrane protein complexes that reduce dioxygen to water and pump protons across the mitochondrial or periplasmatic membrane, contributing to the transmembrane difference of electrochemical potential. Seven years ago we proposed a classification of these enzymes into three different families (A, B and C), based on the amino acid residues of their proton channels and amino acid sequence comparison, later supported by the so far identified characteristics of the catalytic centre of members from each family. The three families have in common the same general structural fold of the catalytic subunit, which contains the same or analogous prosthetic groups, and proton channels. These observations raise the hypothesis that the mechanisms for dioxygen reduction, proton pumping and the coupling of the two processes may be the same for all these enzymes. Under this hypothesis, they should be performed and controlled by the same or equivalent elements/events, and the identification of retained elements in all families will reveal their importance and may prompt the definition of the enzyme operating mode. Thus, we believe that the search for a minimum common denominator has a crucial importance, and in this article we highlight what is already established for the haem-copper oxygen reductases and emphasize the main questions still unanswered in a comprehensive basis.

A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction

Nature Communications, 2015

Creating an artificial functional mimic of the mitochondrial enzyme cytochrome c oxidase (CcO) has been a long-term goal of the scientific community as such a mimic will not only add to our fundamental understanding of how CcO works but may also pave the way for efficient electrocatalysts for oxygen reduction in hydrogen/oxygen fuel cells. Here we develop an electrocatalyst for reducing oxygen to water under ambient conditions. We use site-directed mutants of myoglobin, where both the distal Cu and the redox-active tyrosine residue present in CcO are modelled. In situ Raman spectroscopy shows that this catalyst features very fast electron transfer rates, facile oxygen binding and O-O bond lysis. An electron transfer shunt from the electrode circumvents the slow dissociation of a ferric hydroxide species, which slows down native CcO (bovine 500 s À 1), allowing electrocatalytic oxygen reduction rates of 5,000 s À 1 for these biosynthetic models.

Comprehensive Study of the Enzymatic Catalysis of the Electrochemical Oxygen Reduction Reaction (ORR) by Immobilized Copper Efflux Oxidase (CueO) From Escherichia coli

Frontiers in Chemistry, 2018

In recent years, enzymatic fuel cells have experienced a great development promoted by the availability of novel biological techniques that allow the access to a large number of enzymatic catalysts. One of the most important aspects in this area is the development of biocatalysts for the oxygen reduction reaction (ORR). Laccases from the group of enzymes called blue multi-cooper oxidases have received considerable attention because of their ability to catalyze the electrochemical oxygen reduction reaction to water when immobilized on metallic or carbonaceous electrode materials. In this paper we report a comprehensive study of the electrocatalytic activity of the enzyme Copper efflux oxidase (CueO) from Escherichia coli immobilized on different electrode materials. The influence of the electrode substrate employed for protein immobilization was evaluated using glassy carbon, gold or platinum electrodes. Gold and platinum electrodes were modified using different self-assembled monolayers (SAM) able to tune the electrostatic interaction between the protein and the substrate, depending on the nature of the terminal functional group in the SAM. The effects of protein immobilization time, electrode potential, solution pH and temperature, protein and O 2 concentration have been carefully investigated. Finally, direct electron transfer (DET) was investigated in the presence of the following inhibitors: fluoride (F −), chloride (Cl −) and azide (N − 3).

Structural-functional modeling of non-heme oxygenases

Russian Chemical Bulletin, 2011

The nature designed metal containing oxygenases to perform the most difficult oxidation reactions, such as the alkane oxidation, including the oxidation of methane, the most inert alkane. The enzymatic oxygenation, which proceeds under physiological conditions, i.e., in the absence of severe chemical treatment, is characterized by high efficiency and selectivity as yet unattainable in chemical processes. A search for chemical systems reproducing the prominent features of oxygenases is based on the structural functional modeling of the active sites of these biocatalysts. Recent studies have shown that it is, in principle, possible to design biomimetic catalysts having as good characteristics as biocatalysts.

Bio-inspired nanocatalysts for the oxygen reduction reaction

Nature Communications, 2013

Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the oxygen reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.

Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts

Advanced materials (Deerfield Beach, Fla.), 2018

One of the most important chemical reactions for renewable energy technologies such as fuel cells and metal-air batteries today is oxygen reduction. Due to the relatively sluggish reaction kinetics, catalysts are necessary to generate high power output. The most common catalyst for this reaction is platinum, but its scarcity and derived high price have raised the search for abundant nonprecious metal catalysts. Inspired from enzymatic processes which are known to catalyze oxygen reduction reaction efficiently, employing transition metal complexes as their catalytic centers, many are working on the development of bioinspired and biomimetic catalysts of this class. This research news article gives a glimpse of the recent progress on the development of bioinspired molecular catalyst for oxygen reduction, highlighting the importance of the molecular structure of the catalysts, from advancements in porphyrins and phthalocyanines to the most recent work on corroles, and 3D networks such a...