Comparing the effects of dispersed Stone–Thrower–Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons (original) (raw)
Related papers
Carbon, 2012
Classical molecular dynamics with the AIREBO potential is used to investigate the thermal conductivity of both zigzag and armchair graphene nanoribbons possessing different densities of Stone-Thrower-Wales (STW) defects. Our results indicate that the presence of the defects can decrease thermal conductivity by more than 50%. The larger the defect density, the lower the conductivity, with the decrease significantly higher in zigzag than in armchair nanoribbons for all defect densities. The effect of STW defects in the temperature range 100-600 K was also determined. Our results showed the same trends in thermal conductivity decreases at all temperatures. However, for higher defect densities there was less variation in thermal conductivity at different temperatures.
Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: a Molecular Dynamics Study
2010
We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to ~4 nm wide and ~10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g. ~2000 W/m-K @400K for a 1.5 nm {\times} 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly-shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30{\deg} gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.
Journal of molecular modeling, 2017
The influence of the nitrogen (N) doping configuration on the thermal conductivity (TC) of armchair graphene nanoribbons (AGNRs) of size 15.7 nm × 7.26 nm was investigated using classical molecular dynamics (MD) simulations with the optimized Tersoff potential at room temperature. The effect of changing the N-doping site in defects on the TC of AGNRs was also investigated in detail. The variations with N concentration of the TCs of AGNRs presenting graphitic N (quarternary N), pyridinic N, and pyrrolic N doping configurations were studied. Results of MD simulations showed that, among these three doping configurations, pyridinic N was associated with the highest TC, and pyrrolic N with the lowest TC. The highest TC values were obtained when the N dopant atoms were located at the edges and at defects in the AGNR. The presence of both pyrrolic N and Stone-Wales type 1 (SW-1) defects led to a higher TC than the presence of both pyrrolic N and SW-2 defects. Phonon-defect scattering was f...
Control of thermal and electronic transport in defect-engineered graphene nanoribbons
2011
ABSTRACT The influence of the structural detail and defects on the thermal and electronic transport properties of graphene nanoribbons (GNRs) is explored by molecular dynamics and nonequilibrium Green's function methods. A variety of randomly oriented and distributed defects, single and double vacancies, StoneÀWales defects, as well as two types of edge form (armchair and zigzag) and different edge roughnesses are studied for model systems similar in sizes to experiments (> 100 nm long and> 15 nm wide).
Thermal and Electronic Transport Properties of Graphene Nanoribbons with Defects
2011
Thermoelectric properties of the half-Heusler phase ScNiSb (space group F43m) were studied on a polycrystalline single-phase sample obtained by arc-melting and spark-plasma-sintering techniques. Measurements of the thermopower, electrical resistivity, and thermal conductivity were performed in the wide temperature range 2-950 K. The material appeared as a p-type conductor, with a fairly large, positive Seebeck coefficient of about 240 µV K −1 near 450 K. Nevertheless, the measured electrical resistivity values were relatively high (83 µΩm at 350 K), resulting in a rather small magnitude of the power factor (less than 1 × 10 −3 W m −1 K −2) in the temperature range examined. Furthermore, the thermal conductivity was high, with a local minimum of about 6 W m −1 K −1 occurring near 600 K. As a result, the dimensionless thermoelectric figure of merit showed a maximum of 0.1 at 810 K. This work suggests that ScNiSb could be a promising base compound for obtaining thermoelectric materials for energy conversion at high temperatures.
The thermal conductivity of graphene nanoribbons (GNRs) has been investigated using equilibrium molecular dynamics (EMD) simulation based on Green-Kubo (GK) method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO). Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.
Physical Review B, 2014
Quantum thermal transport in armchair and zigzag graphene nanoribbons are investigated in the presence of single atomic vacancies and subject to different boundary conditions. We start with a full comparison of the phonon polarizations and energy dispersions as given by a fifth-nearest-neighbor force-constant model (5NNFCM) and by elasticity theory of continuum membranes (ETCM). For free-edges ribbons we discuss the behavior of an additional acoustic edge-localized flexural mode, known as fourth acoustic branch (4ZA), which has a small gap when it is obtained by the 5NNFCM. Then, we show that ribbons with supported-edges have a sample-size dependent energy gap in the phonon spectrum which is particularly large for in-plane modes. Irrespective to the calculation method and the boundary condition, the dependence of the energy gap for the low-energy optical phonon modes against the ribbon width W is found to be proportional to 1/W for in-plane, and 1/W 2 for out-of-plane phonon modes. Using the 5NNFCM, the ballistic thermal conductance and its contributions from every single phonon mode are then obtained by the non equilibrium Green's function technique. We found that, while edge and central localized single atomic vacancies do not affect the low-energy transmission function of in-plane phonon modes, they reduce considerably the contributions of the flexural modes. On the other hand, in-plane modes contributions are strongly dependent on the boundary conditions and at low temperatures can be highly reduced in supportededges samples. These findings could open a route to engineer graphene based devices where it is possible to discriminate the relative contribution of polarized phonons and to tune the thermal transport on the nanoscale.
Physical Review B, 2014
We use nonequilibrium molecular-dynamics simulations to study the effect of structural defects on the thermal conductivity λ of graphene. Focusing on 5-7 and 5-8 defects in the graphene honeycomb lattice, we find that λ depends sensitively on whether the defects are isolated, form lines, or form extended arrangements in haeckelites. Our results indicate that the presence of defects makes λ anisotropic and, depending on the temperature, quenches its value by one to two orders of magnitude with respect to graphene, mainly by reducing the phonon mean free path.
Length and Width Dependent Thermal Conductivity of Graphene Nanoribbons
This letter reports on the investigation of thermal conductivity along a long free-standing graphene nanoribbon (GNR) by a one-dimensional direction-dependent phonon-boundary scattering into the linearized phonon Boltzmann transport method. It is observed from the theoretical investigation that GNR has highly length and width dependent thermal conductivities due to difference in the in/out-plane phonon mode in the phonon dispersion curve (PDC). The calculations show that thermal conduction of graphene nanoribbon increases with increasing edge roughness of graphene nanoribbons. Our findings are helpful for understanding and engineering of the thermal conductivity of graphene nanoribbons in potential electronic devices.
Heat Transfer at the Interface of Graphene Nanoribbons with Different Relative Orientations and Gaps
Energies
Because of their high thermal conductivity, graphene nanoribbons (GNRs) can be employed as fillers to enhance the thermal transfer properties of composite materials, such as polymer-based ones. However, when the filler loading is higher than the geometric percolation threshold, the interfacial thermal resistance between adjacent GNRs may significantly limit the overall thermal transfer through a network of fillers. In this article, reverse non-equilibrium molecular dynamics is used to investigate the impact of the relative orientation (i.e., horizontal and vertical overlap, interplanar spacing and angular displacement) of couples of GNRs on their interfacial thermal resistance. Based on the simulation results, we propose an empirical correlation between the thermal resistance at the interface of adjacent GNRs and their main geometrical parameters, namely the normalized projected overlap and average interplanar spacing. The reported correlation can be beneficial for speeding up botto...