WinXPRO : a program for calculating crystal and molecular properties using multipole parameters of the electron density (original) (raw)
Related papers
WinCSD: software package for crystallographic calculations (Version 4)
Journal of Applied Crystallography, 2014
The fourth version of the program packageWinCSDis multi-purpose computer software for crystallographic calculations using single-crystal and powder X-ray and neutron diffraction data. The software environment and the graphical user interface are built using the platform of the Microsoft .NET Framework, which grants independence from changing Windows operating systems and allows for transferring to other operating systems. Graphic applications use the three-dimensional OpenGL graphics language.WinCSDcovers the complete spectrum of crystallographic calculations, including powder diffraction pattern deconvolution, crystal structure solution and refinement in 3 + dspace, refinement of the multipole model and electron density studies from diffraction data, and graphical representation of crystallographic information.
Crystallography Reports, 2005
Methods for calculating some properties of molecules and crystals from the electron density reconstructed from a precise X-ray diffraction experiment using the multipole model are considered. These properties include, on the one hand, the characteristics of the electron density and the inner-crystal electrostatic field and, on the other hand, the local electronic energies (kinetic, potential, total), the exchange energy density, the electron-pair localization function, the localized-orbital locator, the effective crystal potential, and others. It is shown that the integration of these characteristics over pseudoatomic volumes bounded by the surfaces of the zero flux of the electron density gradient makes it possible to characterize directly from an experiment the properties of molecules and crystals in terms of the atomic contributions. The computer program WinXPRO2004, realizing these possibilities, is briefly described.
WebProp: Web interface forab initio calculation of molecular one-electron properties
Journal of Computational Chemistry, 2008
This note describes the features and implementation issues of WebProp, a web-based interface for evaluating ab initio quality one-electron properties. The interface code is written in HTML and Python, while the backend is handled using Python and our indigenously developed code INDPROP for property evaluation. A novel feature of this setup is that it provides a simple interface for computing first principle one-electron properties of small to medium sized molecules. To facilitate computation of otherwise expensive calculations on large molecular systems, we employ the Molecular Tailoring Approach (MTA) developed in our laboratory to obtain the density matrix (DM). This DM is then employed for computing the one-electron properties of these systems. The backend transparently handles jobs submitted by the user and runs them either on a single machine or over a grid of compute nodes. The results of the calculations, which include the summary and the files necessary for visualization of one-electron properties, are e-mailed to the user. The user can either directly use the data or visualize it using visualization tools such as UNIVIS-2000 or Drishti. q 2007 Wiley Periodicals, Inc. J Comput Chem 29: 488-495, 2008
Theoretical Chemistry Accounts, 2007
This paper overviews the work made by our group during the past 10-15 years on crystalline systems, semiconductor surfaces, molecular complexes and on materials of interest for technological applications, such as the defective silicon or the novel generation thermoelectric materials. Our main aim of extracting chemical insight into the analysis of electron densities and computed wave functions is illustrated through a number of examples. The recently proposed Source Function analysis is reviewed and a few of its more interesting applications are summarized. Software package developments, motivated by the need of a direct comparison with experiment or by the help these packages can provide for interpreting complex experimental outcomes, are described and future directions outlined. A particular emphasis is given to the TOPOND and TOPXD programs, which enable one to analyze theoretical and experimental crystalline densities using the rigorous framework of the Quantum Theory of Atoms in Molecules, due to Bader.
Building on the pioneering work of J.-M. André and working in the laboratory he founded, the authors have developed a code called ft-1d to make Hartree-Fock electronic structure computations for stereoregular polymers using Ewald-type convergence acceleration methods. That code also takes full advantage of all line-group symmetries to calculate only the minimal set of two-electron integrals and to optimize the computation of the Fock matrix. The present communication reports a benchmark study of the ft-1d code using polytetrafluoroethylene (PTFE) as a test case. Our results not only confirm the algorithmic correctness of the code through agreement with other studies where they are applicable, but also show that the use of convergence acceleration enables accurate results to be obtained in situations where other widely-used codes (e.g., plh and crystal) fail. It is also found that full attention to the line-group symmetry of the PTFE polymer leads to an increase of between one and two orders of magnitude in the speed of computation. The new code can therefore be viewed as extending the range of electronic-structure computations for stereoregular polymers beyond the present scope of the successful and valuable code crystal.
Molecular Modeling and Electronic Structure Calculations
2017
This laboratory is designed to use the program GAMESS (General Atomic Molecular Electronic Structure System, developed in Gordon research group at Iowa State) through a website called nanoHUB (www.nanoHUB.org) to determine the geometric and electronic properties of numerous small molecules. GAMESS uses ab initio and semi-empirical calculations to determine these properties. Ab initio (“from first principles”) calculations solve the Schrödinger equation using the exact computational expression for the energy of the electrons. The particular ab initio method that we will use for this lab is called HartreeFock (HF). HF uses an approximate wavefunction to solve Schrödinger, so the resulting molecular properties are approximate, but for many applications the accuracy is adequate for interpreting experiments. Semi-empirical calculations use an approximate energy expression for the electrons, but solve for the exact wavefunction associated with this expression. Usually the energy expressio...