Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs (original) (raw)
2013, Journal of Applied Physics
We performed terahertz (THz) time-domain spectroscopy in various geometries, for characterizing the directivity of THz waves emitted from groove patterned InAs structures. We first identified two transient transport processes as underlying THz emission mechanisms in InAs epilayers with different thicknesses. Carrier drift around the surface depletion region was predominant for the THz wave generation in the thin sample group (10-70 nm), whereas electronic diffusion overrode the drift currents in the thick sample group (370-900 nm) as revealed by the amplitude change and phase reversal. Through a combination of electron-beam lithography and inductively coupled plasma etching in 1 lm-thick InAs epilayers, we could further periodically fabricate either asymmetric V-groove patterns or symmetric parabolic apertures. The THz amplitude was enhanced, particularly along the line-of-sight transmissive direction when the periodic groove patterns act as microscale reflective mirrors separated by a scale of the diffusion length. V C 2013 American Institute of Physics. [http://dx.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.