The Medicinal Chemistry of Tuberculosis Chemotherapy (original) (raw)

Strategies and Challenges Involved in the Discovery of New Chemical Entities During Early-Stage Tuberculosis Drug Discovery

The Journal of infectious diseases, 2012

There is an increasing flow of new antituberculosis chemical entities entering the tuberculosis drug development pipeline. Although this is encouraging, the current number of compounds is too low to meet the demanding criteria required for registration, shorten treatment duration, treat drug-resistant infection, and address pediatric tuberculosis cases. More new chemical entities are needed urgently to supplement the pipeline and ensure that more drugs and regimens enter clinical practice. Most drug discovery projects under way exploit enzyme systems deemed essential in a specific Mycobacterium tuberculosis biosynthetic pathway or develop chemical scaffolds identified by phenotypic screening of compound libraries, specific pharmacophores or chemical clusters, and natural products. Because the development of a compound for treating tuberculosis is even longer than for treating other infection indications, the identification of selective, potent, and safe chemical entities early in th...

Challenges in Drug Discovery against Tuberculosis

Molecular Epidemiology Study of Mycobacterium Tuberculosis Complex, 2021

Tuberculosis (TB) is one of the deadly diseases in the present era caused by Mycobacterium tuberculosis. Principally, this bacterium attacks the lungs, however, MTB Has been observed affecting any part of the human body including the kidney, spine, and brain. Drug-resistant progression and other associated properties of MTB become a major hurdle in drug discovery to fight against tuberculosis. Moreover, some of the challenging situations such as the low range of chemical agents, the time-consuming process of drug development, the shortage of predictive animal models, and inadequate information of the physicochemical evidence required for effective bacterial penetration, are additional hindrances for the pharmaceutical scientist. In the current chapter, we focus on challenges encountered during drug discovery and need to be overcome as M. tuberculosis has a substantial barrier in its lipid-containing cell wall to inhibit the influx of drugs which is the initial requirement of the dru...

Challenges in the development of drugs for the treatment of tuberculosis

The Brazilian Journal of Infectious Diseases, 2013

Tuberculosis infection is a serious human health threat and the early 21st century has seen a remarkable increase in global tuberculosis activity. The pathogen responsible for tuberculosis is Mycobacterium tuberculosis, which adopts diverse strategies in order to survive in a variety of host lesions. These survival mechanisms make the pathogen resistant to currently available drugs, a major contributing factor in the failure to control the spread of tuberculosis. Multiple drugs are available for clinical use and several potential compounds are being screened, synthesized, or evaluated in preclinical or clinical studies. Lasting and effective achievements in the development of anti-tuberculosis drugs will depend largely on the proper understanding of the complex interactions between the pathogen and its human host. Ample evidence exists to explain the characteristics of tuberculosis. In this study, we highlighted the challenges for the development of novel drugs with potent bacteriostatic or bactericidal activity, which reduce the minimum time required to cure tuberculosis infection. (Y.S. Lee). exceeding 5% per year. 1 However, surveillance and mathematical modeling suggests that the total TB incidence per capita is falling at an estimated 1% per year, a finding that indicates that the global incidence rate will decrease by 2015. However, the world's population is growing at about 2% per year, and thus the total number of new TB cases remains on the rise. 2 This finding reveals the relative failure of the existing management strategies for TB and the inadequate effectiveness of public health systems, mainly in underdeveloped countries. In spite of the availability of anti-TB drugs developed over the last five decades, one-third of the world's population retains a 1413-8670/$ -see front matter

A roadmap for drug discovery and its translation to small molecule agents in clinical development for tuberculosis treatment

Tuberculosis, 2008

Drug discovery and development, from an initial disease treatment concept to a new drug application (NDA), is a complex, lengthy and expensive process. In this review we discuss the key stages of drug discovery and early development, including target identification and validation, assay development and screening, confirmed hits to leads, lead optimization, and progressing development candidates to an investigational new drug (IND) filing. We also provide particular examples of how this process is beginning to assist in the development of small molecule treatments for tuberculosis, by summarizing the status of the clinical development of several newer classes of drugs. These include the fluoroquinolones, oxazolidinones, diarylquinolines, and nitroimidazooxazoles and -oxazines.

Tuberculosis Drug Discovery: A Decade of Hit Assessment for Defined Targets

Frontiers in Cellular and Infection Microbiology, 2021

More than two decades have elapsed since the publication of the first genome sequence of Mycobacterium tuberculosis (Mtb) which, shortly thereafter, enabled methods to determine gene essentiality in the pathogen. Despite this, target-based approaches have not yielded drugs that have progressed to clinical testing. Whole-cell screening followed by elucidation of mechanism of action has to date been the most fruitful approach to progressing inhibitors into the tuberculosis drug discovery pipeline although target-based approaches are gaining momentum. This review discusses scaffolds that have been identified over the last decade from screens of small molecule libraries against Mtb or defined targets where mechanism of action investigation has defined target-hit couples and structure-activity relationship studies have described the pharmacophore.

Novel targets for tuberculosis drug discovery

Current opinion in pharmacology, 2006

Since the determination of the Mycobacterium tuberculosis genome sequence, various groups have used the genomic information to identify and validate targets as the basis for the development of new anti-tuberculosis agents. Validation might include many components: demonstration of the biochemical activity of the enzyme, determination of its crystal structure in complex with an inhibitor or a substrate, confirmation of essentiality, and the identification of potent growth inhibitors either in vitro or in an infection model. If novel target validation and subsequent inhibition are matched by an improved understanding of disease biology, then new antibiotics could have the potential to shorten the duration of therapy, prevent resistance development and eliminate latent disease.