Cholinergic optimization of cue-evoked parietal activity during challenged attentional performance (original) (raw)
Related papers
2016
The detection of salient or instrumental stimuli and the selection of cue-evoked responses are mediated by a fronto-parietal network that is modulated by cholinergic inputs originating from the basal forebrain. Visual cues that guide behavior are more strongly represented in the posterior parietal cortex (PPC) than are similar cues that are missed or task-irrelevant. Although the crucial role of cholinergic inputs in cue detection has been demonstrated by lesion studies, the role of PPC neurons in the cholinergic modulation of cue detection is unclear. We recorded extracellular spikes from PPC neurons of rats performing a sustained attention task, before and after selective removal of cholinergic inputs to the recording site. Visual cues that were subsequently detected evoked significant increases in the PPC firing rate. In the absence of cholinergic input, the activation of PPC neurons by detected cues was greatly diminished. When a visual distractor was introduced during task perf...
Brain Research Reviews, 2005
Neurophysiological studies demonstrated that increases in cholinergic transmission in sensory areas enhance the cortical processing of thalamic inputs. Cholinergic activity also suppresses the retrieval of internal associations, thereby further promoting sensory input processing. Behavioral studies documented the role of cortical cholinergic inputs in attentional functions and capacities by demonstrating, for example, that the integrity of the cortical cholinergic input system is necessary for attentional performance, and that the activity of cortical cholinergic inputs is selectively enhanced during attentional performance. This review aims at integrating the neurophysiological and behavioral evidence on the functions of cortical cholinergic inputs and hypothesizes that the cortical cholinergic input system generally acts to optimize the processing of signals in attention-demanding contexts. Such signals drecruitT, via activation of basal forebrain corticopetal cholinergic projections, the cortical attention systems and thereby amplify the processing of attentiondemanding signals (termed dsignal-driven cholinergic modulation of detectionT). The activity of corticopetal cholinergic projections is also modulated by direct prefrontal projections to the basal forebrain and, indirectly, to cholinergic terminals elsewhere in the cortex; thus, cortical cholinergic inputs are also involved in the mediation of top-down effects, such as the knowledge-based augmentation of detection (see Footnote 1) of signals and the filtering of irrelevant information (termed dcognitive cholinergic modulation of detectionT). Thus, depending on the quality of signals and task characteristics, cortical cholinergic activity reflects the combined effects of signaldriven and cognitive modulation of detection. This hypothesis begins to explain signal intensity or duration-dependent performance in attention tasks, the distinct effects of cortex-wide versus prefrontal cholinergic deafferentation on attention performance, and it generates specific predictions concerning cortical acetylcholine (ACh) release in attention task-performing animals. Finally, the consequences of abnormalities in the regulation of cortical cholinergic inputs for the manifestation of the symptoms of major neuropsychiatric disorders are conceptualized in terms of dysregulation in the signal-driven and cognitive cholinergic modulation of detection processes. D 2004 Elsevier B.V. All rights reserved.
Behavioural Brain Research, 1998
Corticopetal cholinergic neurons in the basal forebrain (BF) were removed unilaterally from rats by infusing the cholinergic immunotoxin 192 IgG-saporin into the substantia innominata. After 2 weeks, the rats with right-hemisphere infusions showed signs of visuospatial neglect for targets in the left visual field in a cued visual target detection task based upon human covert orienting procedures. No behavioral effects were evident 4 -6 weeks post-infusion. Ten to 22 weeks post-infusion all rats responded more quickly and less accurately to targets in the visual field contralateral to the infusion than to targets ipsilateral to the infusion; further, accuracy for contralateral targets decreased with increasing time between trial initiation and target presentation (target delay), whereas accuracy for ipsilateral targets increased with target delay. Cues did not affect responding to targets in the contralateral visual field more than to targets in the ipsilateral field. The changes in performance could not be attributed to sensory or mnemonic impairment or to response bias. The temporal characteristics of response accuracy and latency suggest the competitive interaction of two time-dependent processes: an attentional process which relies upon cholinergic input from the BF, and a response preparation process which is normally inhibited by the attentional process. These results suggest a role for corticopetal cholinergic pathways in maintaining attention to salient stimuli by inhibiting subcortical motor circuits.
Journal of Neuroscience, 2013
We previously reported involvement of right prefrontal cholinergic activity in veridical signal detection. Here, we first recorded real-time acetylcholine release in prefrontal cortex (PFC) during specific trial sequences in rats performing a task requiring signal detection as well as rejection of nonsignal events. Cholinergic release events recorded with subsecond resolution ("transients") were observed only during signal-hit trials, not during signal-miss trials or nonsignal events. Moreover, cholinergic transients were not observed for consecutive hits; instead they were limited to signal-hit trials that were preceded by factual or perceived nonsignal events ("incongruent hits"). This finding suggests that these transients mediate shifts from a state of perceptual attention, or monitoring for cues, to cue-evoked activation of response rules and the generation of a cue-directed response. Next, to determine the translational significance of the cognitive operations supporting incongruent hits we used a version of the task previously validated for use in research in humans and blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging. Incongruent hits activated a region in the right rostral PFC (Brodmann area 10). Furthermore, greater prefrontal activation was correlated with faster response times for incongruent hits. Finally, we measured tissue oxygen in rats, as a proxy for BOLD, and found prefrontal increases in oxygen levels solely during incongruent hits. These cross-species studies link a cholinergic response to a prefrontal BOLD activation and indicate that these interrelated mechanisms mediate the integration of external cues with internal representations to initiate and guide behavior.
Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales
Neuron, 2007
Cholinergic neurons originating from the basal forebrain innervate the entire cortical mantle. Choline-sensitive microelectrodes were used to measure the synaptic release of cortical acetylcholine (ACh) at a sub-second resolution in rats performing a task involving the detection of cues. Cues that were detected, defined behaviorally, evoked transient increases in cholinergic activity (at the scale of seconds) in the medial prefrontal cortex (mPFC), but not in a non-associational control region (motor cortex). In trials involving missed cues, cholinergic transients were not observed. Cholinergic deafferentation of the mPFC, but not motor cortex, impaired cue detection. Furthermore, decreases and increases in pre-cue cholinergic activity predicted subsequent cue detection or misses, respectively. Finally, cue-evoked cholinergic transients were superimposed over slower (at the time scale of minutes) changes in cholinergic activity. Cortical cholinergic neurotransmission is regulated on multiple time scales to mediate the detection of behaviorally significant cues and to support cognitive performance.
Cholinergic Mediation of Attention
Annals of the New York Academy of Sciences, 2008
Contrary to the classic description of acetylcholine (ACh) as a slowly acting neuromodulator that influences arousal states, results from experiments that employed enzyme-selective microelectrodes for the real-time monitoring of ACh release in the cortex of attentional task-performing rats indicate that cholinergic signals manifesting on multiple timescales (seconds, tens of seconds, and minutes) support, and are necessary for, the mediation of defined cognitive operations. Specifically, in the prefrontal cortex, second-based cholinergic signals support the detection of behaviorally significant cues. In contrast to these prefrontal cholinergic transients, performance-associated cholinergic activity that manifested at lower temporal resolution also was observed elsewhere in the cortex. Although tonic cholinergic signal levels were correlated with the amplitudes of cue-evoked cholinergic transients, and the latter with response latencies, the interrelationships and interactions between the multiple cholinergic signaling modes remains unclear. Hypotheses concerning the afferent circuitry contributing to the regulation of second-versus minute-based cholinergic signals are discussed. The discovery of cholinergic transients and their crucial role in cue detection and attentional performance form the basis for new hypotheses about the nature of cholinergic dysfunction in cognitive disorders and offer new targets for the development of treatments for the cognitive symptoms of neuropsychiatric and neurodegenerative disorders.
Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention
The Journal of Neuroscience, 2018
A critical function of attention is to support a state of readiness to enhance stimulus detection, independent of stimulus modality. The nucleus basalis magnocellularis (NBM) is the major source of the neurochemical acetylcholine (ACh) for frontoparietal cortical networks thought to support attention. We examined a potential supramodal role of ACh in a frontoparietal cortical attentional network supporting target detection. We recorded local field potentials (LFPs) in the prelimbic frontal cortex (PFC) and the posterior parietal cortex (PPC) to assess whether ACh contributed to a state of readiness to alert rats to an impending presentation of visual or olfactory targets in one of five locations. Twenty male Long-Evans rats underwent training and then lesions of the NBM using the selective cholinergic immunotoxin 192 IgG-saporin (0.3 g/l; ACh-NBM-lesion) to reduce cholinergic afferentation of the cortical mantle. Postsurgery, ACh-NBMlesioned rats had less correct responses and more omissions than sham-lesioned rats, which changed parametrically as we increased the attentional demands of the task with decreased target duration. This parametric deficit was found equally for both sensory targets. Accurate detection of visual and olfactory targets was associated specifically with increased LFP coherence, in the beta range, between the PFC and PPC, and with increased beta power in the PPC before the target's appearance in sham-lesioned rats. Readiness-associated changes in brain activity and visual and olfactory target detection were attenuated in the ACh-NBM-lesioned group. Accordingly, ACh may support supramodal attention via modulating activity in a frontoparietal cortical network, orchestrating a state of readiness to enhance target detection.
Learning & Memory, 2014
Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus basalis region (SI/nBM) to the neocortex are necessary to increase attention to relevant stimuli and have been well studied. Lesser known are ACh projections from the medial septum/vertical limb of the diagonal band (MS/VDB) to the hippocampus and the cingulate that are necessary to reduce attention to irrelevant stimuli. We developed a neural simulation to provide insight into how ACh can decrement attention using this distinct pathway from the MS/VDB. We tested the model in behavioral paradigms that require decremental attention. The model exhibits behavioral effects such as associative learning, latent inhibition, and persisting behavior...
Attentional functions of cortical cholinergic inputs: What does it mean for learning and memory?
Neurobiology of Learning and Memory, 2003
The hypothesis that cortical cholinergic inputs mediate attentional functions and capacities has been extensively substantiated by experiments assessing the attentional effects of specific cholinotoxic lesions of cortical cholinergic inputs, attentional performanceassociated cortical acetylcholine release, and the effects of pharmacological manipulations of the excitability of basal forebrain corticopetal cholinergic projections on attentional performance. At the same time, numerous animal experiments have suggested that the integrity of cortical cholinergic inputs is not necessary for learning and memory, and a dissociation between the role of the cortical cholinergic input system in attentional functions and in learning and memory has been proposed. We speculate that this dissociation is due, at least in part, to the use of standard animal behavioral tests for the assessment of learning and memory which do not sufficiently tax defined attentional functions. Attentional processes and the allocation of attentional capacities would be expected to influence the efficacy of the acquisition and recall of declarative information and therefore, persistent abnormalities in the regulation of the cortical cholinergic input system may yield escalating impairments in learning and memory. Furthermore, the cognitive effects of loss of cortical cholinergic inputs are augmented by the disruption of the top-down regulation of attentional functions that normally acts to optimize information processing in posterior cortical areas. Because cortical cholinergic inputs play an integral role in the mediation of attentional processing, the activity of cortical cholinergic inputs is hypothesized to also determine the efficacy of learning and memory. (M. Sarter). 1 The sensitivity of the methods used in these early studies is remarkable; for example, Celesia and Jaspers were able to detect approximately 100 pmol of ACh. 2 The term BF refers to the corticopetal neurons arising from the nucleus basalis of Meynert and the substantia innominata.