Divalent Cation-, Nucleotide-, and Polymerization-Dependent Changes in the Conformation of Subdomain 2 of Actin (original) (raw)
Abstract
Conformational changes in subdomain 2 of actin were investigated using fluorescence probes dansyl cadaverine (DC) or dansyl ethylenediamine (DED) covalently attached to Gln 41 . Examination of changes in the fluorescence emission spectra as a function of time during Ca 2ϩ /Mg 2ϩ and ATP/ADP exchange at the high-affinity site for divalent cation-nucleotide complex in G-actin confirmed a profound influence of the type of nucleotide but failed to detect a significant cationdependent difference in the environment of Gln 41 . No significant difference between Ca-and Mg-actin was also seen in the magnitude of the fluorescence changes resulting from the polymerization of these two actin forms. Evidence is presented that earlier reported cation-dependent differences in the conformation of the loop 38 -52 may be related to time-dependent changes in the conformation of subdomain 2 in DED-or DC-labeled G-actin, accelerated by substitution of Mg 2ϩ for Ca 2ϩ in CaATP-G-actin and, in particular, by conversion of MgATP-into MgADP-G-actin. These spontaneous changes are associated with a denaturation-driven release of the bound nucleotide that is promoted by two effects of DED or DC labeling: lowered affinity of actin for nucleotide and acceleration of ATP hydrolysis on MgATP-G-actin that converts it into a less stable MgADP form. Evidence is presented that the changes in the environment of Gln 41 accompanying actin polymerization result in part from the release of P i after the hydrolysis of ATP on the polymer. A similarity of this change to that accompanying replacement of the bound ATP with ADP in G-actin is discussed.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (60)
- Attri, A. K., M. C. Lewis, and E. D. Korn. 1991. The formation of actin oligomers studied by analytical ultracentrifugation. J. Biol. Chem. 266: 6815-6824.
- Ba ´ra ´ny, M., F. Finkelman, and T. Therattil-Antony. 1962. Studies on the bound calcium of actin. Arch. Biochem. Biophys. 98:28 -45.
- Bitny-Szlachto, S. 1960. Reaction of mercaptans with unsymmetrical dis- ulphides. Acta Pol. Pharm. 17:373-385.
- Carlier, M.-F. 1991. Actin: protein structure and filament dynamics. J. Biol. Chem. 266:1-4.
- Carlier, M.-F., and D. Pantaloni. 1986. Direct evidence for ADP-P i -F-actin as the major intermediate in ATP-actin polymerization. Rate of disso- ciation of P i from actin filaments. Biochemistry. 25:7789 -7792.
- Carlier, M.-F., D. Pantaloni, and E. D. Korn. 1987. The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin. J. Biol. Chem. 262:3052-3059.
- Chik, J. K., U. Lindberg, and C. E. Schutt. 1996. The structure of an open state of beta-actin at 2.65 Å resolution. J. Mol. Biol. 263:607-623.
- Coluccio, L. M., and L. G. Tilney. 1984. Phalloidin enhances actin assem- bly by preventing monomer dissociation. J. Cell Biol. 99:529 -535.
- Combeau, C., and M.-F. Carlier. 1988. Probing the mechanism of ATP hydrolysis on F-actin using vanadate and the structural analogs of phosphate BeF 3 Ϫ and AlF 4 Ϫ . J. Biol. Chem. 263:17429 -17436.
- Crosbie, R. H., C. Miller, P. Cheung, T. Goodnight, A. Muhlrad, and E. Reisler. 1994. Structural connectivity in actin: effect of C-terminal modifications on the properties of actin. Biophys. J. 67:1957-1964.
- Drewes, G., and H. Faulstich. 1991. A reversible conformational transition in muscle actin is caused by nucleotide exchange and uncovers cysteine in position 10. J. Biol. Chem. 266:5508 -5513.
- Eligula, L., L. Chuang, M. L. Phillips, M. Motoki, K. Seguro, and A. Muhlrad. 1998. Transglutaminase-induced cross-linking between subdo- main 2 of G-actin and the 636 -642 lysine-rich loop of myosin subfrag- ment 1. Biophys. J. 74:953-963.
- Estes, J. E., L. A. Selden, and L. C. Gershman. 1981. Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry. 20:708 -712.
- Estes, J. E., L. A. Selden, and L. C. Gershman. 1987. Tight binding of divalent cations to monomeric actin. Binding kinetics support a simpli- fied model. J. Biol. Chem. 262:4952-4957.
- Estes, J. E., L. A. Selden, H. J. Kinosian, and L. C. Gershman. 1992. Tightly bound divalent cation of actin. J. Muscle Res. Cell Motil. 13:272-284.
- Faulstich, H., I. Merkler, H. Blackholm, and C. Stournaras. 1984. Nucle- otide in monomeric actin regulates the reactivity of the thiol groups. Biochemistry. 23:1608 -1612.
- Frieden, C., and K. Patane. 1985. Differences in G-actin containing bound ATP or ADP: the Mg 2ϩ -induced conformational change requires ATP. Biochemistry. 24:4192-4196.
- Gershman, L. C., L. A. Selden, and J. E. Estes. 1986. High affinity binding of divalent cation to actin monomer is much stronger than previously reported. Biochem. Biophys. Res. Commun. 135:607-614.
- Gershman, L. C., L. A. Selden, H. J. Kinosian, and J. E. Estes. 1989. Preparation and polymerization properties of monomeric ADP-actin. Biochim. Biophys. Acta. 995:109 -115.
- Hegyi, G., G. Premecz, B. Sain, and A. Muhlrad. 1974. Selective carbo- ethoxylation of the histidine residues of actin by diethyl pyrocarbonate. Eur. J. Biochem. 44:7-12.
- Holmes, K. C., D. Popp, W. Gebhard, and W. Kabsch. 1990. Atomic model of actin filament. Nature. 347:44 -49.
- Houk, W. T., and K. Ue. 1974. The measurement of actin concentration in solution: a comparison of methods. Anal. Biochem. 62:66 -74.
- Huang, Y.-P., K. Seguro, M. Motoki, and K. Tawada. 1992. Cross-linking of contractile proteins from skeletal muscle by treatment with microbial transglutaminase. J. Biochem. (Tokyo). 112:229 -234.
- Kabsch, W., H. G. Mannherz, D. Suck, E. F. Pai, and K. Holmes. 1990. Atomic structure of the actin: DNase I complex. Nature. 347:37-44.
- Khaitlina, S. Y., J. Moraczewska, and H. Strzelecka-Gołaszewska. 1993. The actin/actin interactions involving the N-terminus of the DNase-I- binding loop are crucial for stabilization of the actin filament. Eur. J. Biochem. 218:911-920.
- Kim, E., M. Motoki, K. Seguro, A. Muhlrad, and E. Reisler. 1995. Conformational changes in subdomain 2 of G-actin: fluorescence prob- ing by dansyl ethylenediamine attached to Gln-41. Biophys. J. 69: 2024 -2032.
- Kinosian, H. J., L. A. Selden, J. E. Estes, and L. C. Gershman. 1993. Nucleotide binding to actin. Cation dependence of nucleotide dissocia- tion and exchange rates. J. Biol. Chem. 268:8683-8691.
- Kodama, T., K. Fukui, and K. Kometani. 1986. The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a mod- ified malachite green method for determination of inorganic phosphate. J. Biochem. (Tokyo). 99:1465-1472.
- Konno, K., and M. Morales. 1985. Exposure of actin thiols by the removal of tightly held calcium ions. Proc. Natl. Acad. Sci. USA. 82:7904 -7908.
- Kuznetsova, I., O. Andropova, K. Turoverov, and S. Khaitlina. 1996. Conformational changes in subdomain I of actin induced by proteolytic cleavage within the DNase-I-binding loop: energy transfer from trypto- phan to AEDANS. FEBS Lett. 383:105-108.
- Lorand, L., N. G. Rule, H. H. Ong, R. Furlanetto, A. Jacobsen, J. Downey, N. Oner, and J. Bruner-Lorand. 1968. Amine specificity in transpepti- dation. Inhibition of fibrin cross-linking. Biochemistry. 7:1214 -1223.
- Lorenz, M., D. Popp, and K. C. Holmes. 1993. Refinement of the F-actin model against x-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234:826 -836.
- Ludescher, R. D., and Z. Liu. 1993. Characterization of skeletal muscle actin labeled with the triplet probe erythrosin-5-iodoacetamide. Photo- chem. Photobiol. 58:858 -866.
- Martonosi, A., and M. A. Gouvea. 1961. Studies on actin. VI. The inter- action of nucleotide triphosphates with actin. J. Biol. Chem. 236: 1345-1352.
- McLoughlin, P. J., J. T. Gooch, H.-G. Mannherz, and A. G. Weeds. 1993. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 364:685-692.
- Miki, M., and T. Kouyama. 1994. Domain motion in actin observed by fluorescence resonance energy transfer. Biochemistry. 33:10171-10177.
- Moraczewska, J., H. Strzelecka-Gołaszewska, P. D. J. Moens, and C. G. dos Remedios. 1996. Structural changes in subdomain 2 of G-actin observed by fluorescence spectroscopy. Biochem. J. 317:605-611.
- Mossakowska, M., J. Moraczewska, S. Khaitlina, and H. Strzelecka- Gołaszewska. 1993. Proteolytic removal of three C-terminal residues of actin alters the monomer-monomer interactions. Biochem. J. 289: 897-902.
- Muhlrad, A., P. Cheung, B. C. Phan, C. Miller, and E. Reisler. 1994. Dynamic properties of actin. Structural changes induced by beryllium fluoride. J. Biol. Chem. 269:11852-11858.
- Nagy, B., and W. P. Jencks. 1962. Optical rotatory dispersion of G-actin. Biochemistry. 1:987-996.
- Newman, J., J. E. Estes, L. A. Selden, and L. C. Gershman. 1985. Presence of oligomers at subcritical actin concentration. Biochemistry. 24: 1538 -1544.
- Nowak, E., H. Strzelecka-Gołaszewska, and R. Goody. 1988. Kinetics of nucleotide and metal ion interaction with G-actin. Biochemistry. 27: 1785-1792.
- Ooi, A., and K. Mihashi. 1996. Effects of subtilisin cleavage of monomeric actin on its nucleotide binding. J. Biochem. 120:1104 -1110.
- Orlova, A., and E. H. Egelman. 1992. Structural basis for the destabiliza- tion of F-actin by phosphate release following ATP hydrolysis. J. Mol. Biol. 227:1043-1053.
- Orlova, A., and E. H. Egelman. 1993. A conformational change in the actin subunit can change the flexibility of the actin filament. J. Mol. Biol. 232:334 -341.
- Page, R., U. Lindberg, and C. E. Schutt. 1998. Domain motions in actin. J. Mol. Biol. 280:463-474.
- Schutt, C. E., J. C. Myslik, M. D. Rozycki, N. C. W. Goonesekere, and U. Lindberg. 1993. The structure of crystalline profilin-beta-actin. Nature. 365:810 -816.
- Schwyter, D., M. Phillips, and E. Reisler. 1989. Subtilisin-cleaved actin: polymerization and interaction with myosin subfragment 1. Biochemis- try. 28:5889 -5895.
- Selden, L. A., J. E. Estes, and L. C. Gershman. 1983. The tightly bound divalent cation regulates actin polymerization. Biochem. Biophys. Res. Commun. 116:478 -485.
- Spudich, J. A., and S. Watt. 1971. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of interaction of the tropomyosin- troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246:4866 -4871.
- Steinmetz, M. O., K. N. Goldie, and U. Aebi. 1997. A correlative analysis of actin filament assembly, structure, and dynamics. J. Cell Biol. 138: 559 -574.
- Strzelecka-Gołaszewska, H., J. Moraczewska, S. Y. Khaitlina, and M. Mossakowska. 1993. Localization of the tightly bound divalent-cation- dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion. Eur. J. Biochem. 211:731-742.
- Strzelecka-Gołaszewska, H., M. Mossakowska, A. Woz ´niak, J. Mora- czewska, and H. Nakayama. 1995. Long-range conformational effects of proteolytic removal of the last three residues of actin. Biochem. J. 307:527-534.
- Strzelecka-Gołaszewska, H., A. Woz ´niak, T. Hult, and U. Lindberg. 1996. Effects of the type of divalent cation, Ca 2ϩ , or Mg 2ϩ bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin. Biochem. J. 318:713-721.
- Takashi, R. 1988. A novel actin label: a fluorescent probe at glutamine-41 and its consequences. Biochemistry. 27:938 -943.
- Tirion, M. M., and D. ben-Avraham. 1993. Normal mode analysis of G-actin. J. Mol. Biol. 230:186 -195.
- Tirion, M. M., D. ben-Avraham, M. Lorenz, and K. C. Holmes. 1995. Normal modes as refinement parameters for the F-actin model. Bio- phys. J. 68:5-12.
- Valentin-Ranc, C., and M.-F. Carlier. 1991. Role of ATP-bound divalent metal ion in the conformation and function of actin. Comparison of Mg-ATP, Ca-ATP and metal ion-free ATP-actin. J. Biol. Chem. 266: 7668 -7675.
- West, J. J. 1971. Binding of nucleotide to cation-free G-actin. Biochemis- try. 10:3547-3553.
- Wriggers, W., and K. Schulten. 1996. Dynamics and stability of G-actin. Biophys. J. 70:A34.