Interannual active layer variability at the Limnopolar Lake CALM site on Byers Peninsula, Livingston Island, Antarctica (original) (raw)
Related papers
Solid Earth, 2014
The Limnopolar Lake site (A25), of the Circumpolar Active Layer Monitoring -South network (CALM-S), is located on Byers Peninsula, where the active layer thickness is monitored systematically (by mechanical probing during the thawing season and by temperature devices continuously since 2009). Air, surface, snow and ground temperature devices have been installed to monitor ground thermal behavior, which is presented and characterized here. We use the air and ground mean daily temperature values to define the following parameters: maximum, minimum and mean temperatures, the zero annual thermal amplitude, and the depth and position of the top of the permafrost table. The freezing and thawing seasons (defining their starting dates as well as their length) and the existence of zero curtain periods have also been established. We also derive apparent thermal diffusivity and plot thermograms to study the thermal behavior of the ground at different depths and seasons. After this complete thermal characterization of the active layer, we propose the potential existence of a permafrost table at approximately 130 cm in depth as well as a former transitional layer above it, and discuss the role of water in connection with the thermal behavior of the ground during the study period. 2012). We use here some of those data (air and ground Published by Copernicus Publications on behalf of the European Geosciences Union.
2003
Two shallow boreholes were drilled in 2000 in the vicinity of the Spanish Antarctic Station Juan Carlos I in Livingston Island (South Shetlands, Antarctic – 62°39 S, 60°21 W). A borehole is located in Cerro Incinerador at 35 m ASL and was drilled to 240 cm depth in quartzite bedrock (Myers Bluff Formation). The other is located in Reina Sofia Peak at 275 m ASL and was drilled in a matrix-supported diamicton to a depth of 110 cm. PVC tubes were inserted in the drillings and thermistor chains based on miniature data loggers were installed inside them. Temperature data is collected at 4-hour intervals. The first year of data from the boreholes evidence their different setting, both in what respects to altitude and to ground thermal properties. The results from the borehole at Cerro Incinerador suggest that the active layer is very thick there and the borehole does not reach the (possible) permafrost table. At Reina Sofia Peak, the lower section of the drilling is below the permafrost t...
2007
This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study's ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.
2008
This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study's ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.
This paper describes the active layer thermal regimes in two shallow boreholes, Sofía 275 m a.s.l. and Incinerador 35 m a.s.l., for which the ground temperature series has been recorded continuously from 2000 to 2006. The monitoring sites are located in Livingston Island, South Shetland Archipelago, Antarctica. This is one of the most sensitive regions of Earth to climate change, with a major warming trend over the last 50 years, of ca. +2.5oC in the Mean Annual Air Temperatures (MAAT). This region is located near the climatic limit of permafrost, since MAAT at sea level is close to -2oC. Lineal fits of the ground temperatures series for the study period at different depths in these boreholes show positive slopes. An outcome from the analysis of freezing and thawing indexes is that most of the ground warming seems to concentrate in the summer.
Atmosphere, 2020
The Antarctic Peninsula (AP) region has been one of the regions on Earth with strongest warming since 1950. However, the northwest of the AP showed a cooling from 2000 to 2015, which had local consequences with an increase in snow accumulation and a deceleration in the loss of mass from glaciers. In this paper, we studied the effects of increased snow accumulation in the permafrost thermal regime in two boreholes (PG1 and PG2) in Livingston Island, South Shetlands Archipelago, from 2009 to 2015. The two boreholes located c. 300 m apart but at similar elevation showed different snow accumulation, with PG2 becoming completely covered with snow all year long, while the other remained mostly snow free during the summer. The analysis of the thermal regimes and of the estimated soil surface energy exchange during the study period showed the effects of snow insulation in reducing the active layer thickness. These effects were especially relevant in PG2, which transitioned from a subaerial ...
Active layer monitoring in Antarctica: an overview of results from 2006 to 2015
Polar Geography, 2018
Monitoring of active layer thawing depth and active layer thickness (ALT), using mechanical pronging and continuous temperature data logging, has been undertaken under the Circumpolar Active Layer Monitoring-South (CALM-S) program at a range of sites across Antarctica. The objective of this study was to summarize key data from sites in different Antarctic regions from 2006 to 2015 to review the state of the active layer in Antarctica and the effectiveness of the CALMS program. The data from 16 sites involving 8 CALMS and another 8 boreholes across the Antarctic have been used in the study. Probing for thaw depth, while giving information on local spatial variability, often underestimates the maximum ALT of Antarctic soils compared to that determined using continuous temperature monitoring. The differences are likely to be caused by stones limiting probe penetration and the timing of probing not coinciding with the timing of maximum thaw, which varies between seasons. The information on the active layer depth is still sparse in many regions and the monitoring needs to be extended and continued to provide a better understanding of both spatial and temporal variability in Antarctic soil thermal properties.
Permafrost and Periglacial Processes, 2010
Results obtained during the International Polar Year (IPY) on the thermal state of permafrost and the active layer in the Antarctic are presented, forming part of ANTPAS (‘Antarctic Permafrost and Soils’), which was one of the key projects developed by the International Permafrost Association and the Scientific Committee for Antarctic Research for the IPY. The number of boreholes for permafrost and active-layer monitoring was increased from 21 to 73 during the IPY, while CALM-S sites to monitor the active layer were increased from 18 to 28. Permafrost temperatures during the IPY were slightly below 0°C in the South Shetlands near sea-level, showing that this area is near the climatic boundary of permafrost and has the highest sensitivity to climate change in the region. Permafrost temperatures were much lower in continental Antarctica: from the coast to the interior and with increasing elevation they ranged between −13.3°C and −18.6°C in Northern Victoria Land, from −17.4°C to −22.5°C in the McMurdo Dry Valleys, and down to −23.6°C at high elevation on Mount Fleming (Ross Island). Other monitored regions in continental Antarctica also showed cold permafrost: Queen Maud Land exhibited values down to −17.8°C on nunataks, while in Novolazarevskaya (Schirmacher Oasis) at 80 m a.s.l. the permafrost temperature was −8.3°C. The coastal stations of Molodeznaya at Enderby Land showed permafrost temperatures of −9.8°C, Larsemann Hills – Progress Station in the Vestfold Hills region – recorded −8.5°C, and Russkaya in Marie Byrd Land, −10.4°C. This snapshot obtained during the IPY shows that the range of ground temperatures in the Antarctic is greater than in the Arctic. Copyright © 2010 John Wiley & Sons, Ltd.
Active layer thermal regime in two climatically contrasted sites of the Antarctic Peninsula region
Cuadernos de Investigación Geográfica, 2016
Permafrost controls geomorphic processes in ice-free areas of the Antarctic Peninsula (AP) region. Future climate trends will promote significant changes of the active layer regime and permafrost distribution, and therefore a better characterization of present-day state is needed. With this purpose, this research focuses on Ulu Peninsula (James Ross Island) and Byers Peninsula (Livingston Island), located in the area of continuous and discontinuous permafrost in the eastern and western sides of the AP, respectively. Air and ground temperatures in as low as 80 cm below surface of the ground were monitored between January and December 2014. There is a high correlation between air temperatures on both sites (r=0.74). The mean annual temperature in Ulu Peninsula was -7.9 ºC, while in Byers Peninsula was -2.6 ºC. The lower air temperatures in Ulu Peninsula are also reflected in ground temperatures, which were between 4.9 (5 cm) and 5.9 ºC (75/80 cm) lower. The maximum active layer thickn...
Long term active layer monitoring at a warm-based glacier front from maritime Antarctica
CATENA, 2017
Knowledge on active-layer dynamics and permafrost distribution is of especial importance in Maritime Antarctica, where dramatic climate warming occurred in the last decades. Few long-term studies of active-layer temperatures in this region, and no one focus on recently deglaciated areas under paraglacial conditions. This paper analyses the long-term soil thermal regime of a warm-based glacial front site located at Low Head, King George Island. The monitoring system consists of soil temperature probes connected to a datalogger that recorded data at hourly intervals. We calculated the thawing days (TD), freezing days (FD), number of isothermal days (ID), number of freeze-thaw days (FTD), thawing degree days (TDD), freezing degree days (FDD), and the apparent thermal diffusivity (ATD). The results indicate that active layer thermal regime at Low Head is similar to other periglacial environments from Maritime Antarctica, with differences associated with the influence from the nearby warm-based glacier. Surface temperatures show greater variations during the summer resulting in frequent freeze and thaw cycles, mainly (1 cm and 10 cm). The temperature profile during the studied period indicates that the active layer thickness reached a maximum of 106 cm on February 7th 2015. Soil temperature buffering was limited by the low snow cover, low soil moisture, and absence of vegetation. Based on the high interannual variability detected during the five years monitoring run, we stress that longer monitoring periods are necessary for a more detailed knowledge on how permafrost respond to climate changes in this rapidly warming zone.