The HBZ-SP1 isoform of human T-cell leukemia virus type I represses JunB activity by sequestration into nuclear bodies (original) (raw)

Propensity for HBZ-SP1 isoform of HTLV-I to inhibit c-Jun activity correlates with sequestration of c-Jun into nuclear bodies rather than inhibition of its DNA-binding activity

Virology, 2009

HTLV-I bZIP factor (HBZ) contains a C-terminal zipper domain involved in its interaction with c-Jun. This interaction leads to a reduction of c-Jun DNA-binding activity and prevents the protein from activating transcription of AP-1-dependent promoters. However, it remained unclear whether the negative effect of HBZ-SP1 was due to its weak DNA-binding activity or to its capacity to target cellular factors to transcriptionally-inactive nuclear bodies. To answer this question, we produced a mutant in which specific residues present in the modulatory and DNA-binding domain of HBZ-SP1 were substituted for the corresponding c-Fos amino acids to improve the DNA-binding activity of the c-Jun/HBZ-SP1 heterodimer. The stability of the mutant, its interaction with c-Jun, DNA-binding activity of the resulting heterodimer, and its effect on the c-Jun activity were tested. In conclusion, we demonstrate that the repression of c-Jun activity in vivo is mainly due to the HBZ-SP1-mediated sequestration of c-Jun to the HBZ-NBs.

An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of tax-dependent viral transcription by HBZ

2008

Activation of human T cell leukemia virus type 1 (HTLV-1) transcription is established through the formation of protein complexes on the viral promoter that are essentially composed of the cellular basic leucine zipper (bZIP) transcription factor cAMP-response element-binding protein (CREB (or certain other members of the ATF/CREB family), the HTLV-1-encoded transactivator Tax, and the pleiotropic cellular coactivators p300/CBP. HTLV-1 bZIP factor (HBZ) is a protein encoded by HTLV-1 that contains a bZIP domain and functions to repress HTLV-1 transcription. HBZ has been shown to repress viral transcription by dimerizing with CREB, which occurs specifically through the bZIP domain in each protein, and preventing CREB from binding to the DNA. However, we previously found that HBZ causes only partial removal of CREB from a chromosomally integrated viral promoter, and more importantly, an HBZ mutant lacking the COOH-terminal bZIP domain retains the ability to repress viral transcription. These results suggest that an additional mechanism contributes to HBZ-mediated repression of HTLV-1 transcription. In this study, we show that HBZ binds directly to the p300 and CBP coactivators. Two LXXLL-like motifs located within the NH 2 -terminal region of HBZ are important for this interaction and specifically mediate binding to the KIX domain of p300/CBP. We provide evidence that this interaction interferes with the ability of Tax to bind p300/CBP and thereby inhibits the association of the coactivators with the viral promoter. Our findings demonstrate that HBZ utilizes a bipartite mechanism to repress viral transcription.

Dual cytoplasmic and nuclear localization of HTLV-1-encoded HBZ protein is a unique feature of adult T-cell leukemia

Haematologica, 2021

Adult T-cell leukemia-lymphoma (ATL), is a highly malignant T-cell neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1), characterized by poor prognosis. Two viral proteins, Tax-1 and HTLV-1 basic-zipper factor (HBZ) play important roles in the pathogenesis of ATL. While Tax-1 can be found in both the cytoplasm and nucleus of HTLV-1 infected patients, HBZ is exclusively localized in the cytoplasm of HTLV-1 asymptomatic carriers and in patients with the chronic neurologic disease HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HBZ is only localized in the nucleus of ATL cell lines, suggesting that the nuclear localization of HBZ can be a hallmark of neoplastic transformation. In order to clarify this crucial point, we investigated in detail the pattern of HBZ expression in ATL patients. We made use of our monoclonal antibody 4D4-F3, that at present is the only reported reagent, among the few described, able to detect endogenous HBZ by immunofluorescence...

HBZ interacts with JunD and stimulates its transcriptional activity

FEBS Letters, 2004

Human T-cell leukemia virus type I (HTLV-I) bZIP factor (HBZ) is a viral basic leucine zipper protein that was originally described as a partner of cAMP response element binding protein-2 and as a repressor of HTLV-I viral transcription. In addition, HBZ is able to interact with the activator protein-1 (AP-1) transcription factors c-Jun and JunB, the interaction with c-Jun leading to a transcriptional repression of AP-1-regulated genes. Here we show that HBZ also interacts with JunD in vitro and in vivo, and that this association occurs via the bZIP domain of the two proteins. Moreover, we show that HBZ can activate JunD-dependent transcription and that its amino-terminus is required.

Subnuclear localization of the trans-activating protein of human T-cell leukemia virus type I

Journal of virology, 1988

Human T-cell leukemia virus type I is associated with human lymphoid malignancies. The p40xI protein encoded by the x gene of this virus is believed to play some role in virally mediated transformation. This gene is known to encode a transcriptional trans activator which previous studies have shown to be a nuclear protein. Further characterization of the intracellular kinetics of this protein showed that it migrated into the nucleus very soon after synthesis. Within the nucleus, p40xI was distributed almost equally between the nucleoplasm and the nuclear matrix. Given the proposed role of the nuclear matrix in RNA transcription, the association of p40xI with the matrix places it in an appropriate cellular compartment to exercise an effect on transcription.

Regulation of the human T-cell leukemia virus gene expression depends on the localization of regulatory proteins Tax, Rex and p30II in specific nuclear subdomains

Gene, 2007

The human T-cell leukemia virus HTLV-1 encodes regulatory proteins, Tax, Rex and p30(II), which are involved in the control of viral gene expression at the transcriptional and post-transcriptional levels. Tax localizes in unique nuclear bodies that contain components of the transcription and splicing complexes. In this work, we studied the relative intracellular localizations of Tax, Rex and p30(II). Run-on transcription assays and immunocytochemistry at light and electron microscopy levels indicated that the Tax nuclear bodies included both de novo transcribed RNA and the RNA polymerase II form that is phosphorylated on its carboxy-terminal domain whereas contacts with chromatin were observed at the periphery of these nuclear bodies. Rex first accumulated in nucleolar foci and then spread across the whole nucleus to display a diffuse and punctuate nucleoplasmic distribution. This distribution of Rex was observed in HTLV-1 transformed lymphocytes and in COS cells expressing the HTLV-1 provirus. Rex colocalized with the cellular export factor CRM-1 in the nucleolar foci as well as in the nucleoplasmic foci that did not overlap with Tax nuclear bodies but were found at the boundaries of the Tax bodies. In addition, we demonstrate that p30(II) interacts with Rex and colocalizes with the Rex/CRM-1 complexes in the nucleoli leading to their clearance from the nucleoplasm. Our results suggest that transcripts originating from Tax-induced activation of gene expression at the boundaries of the Tax bodies are transported out of the nucleus by nucleoplasmic Rex/CRM-1 complexes that are first assembled in nucleolar foci. In addition, p30(II) might exert its negative effect on viral RNA transport by preventing the release of the Rex/CRM-1 complexes from sequestration in nucleolar foci. These data support the idea that the transcriptional and post-transcriptional regulation of HTLV-1 gene expression depends on the concentration of select regulatory complexes at specific area of the nucleus.