Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor (original) (raw)

Synergetic improvements of sensitivity and specificity of nanowire field effect transistor gene chip by designing neutralized DNA as probe

Scientific reports, 2018

Neutral DNA analogs as probes for the detection of target oligomers on the biosensors based on the field-effect transistor (FET) configuration feature advantages in the enhancement of sensitivity and signal-to-noise ratio. Herein, we used phosphate-methylated nucleotides to synthesize two partially neutralized chimeric DNA products and a fully neutralized DNA sequence and adopted a regular DNA oligomer as probes on the polycrystalline silicon nanowire (NW) FET devices. The sequences of two neutralized chimeric DNAs close to the 5' end were alternately modified with the phosphate-methylated nucleotides, and all probes were immobilized via their 5' end on the NW surface. The non-specific-to-specific binding ratio indicated that the two 5'-end partially neutralized chimeric DNAs featured better performance than the regular and fully neutralized DNA oligomers. The partially neutralized probe design reduces the ionic strength needed for hybridization and increases the Debye l...

On the Development of Label-Free DNA Sensor Using Silicon Nanonet Field-Effect Transistors

Proceedings, 2017

In this paper, the process and electrical characteristics of DNA sensor devices based on silicon nanonet (SiNN) field-effect transistors are reported. The SiNN, another name of randomly oriented Si nanowires network, was successfully integrated into transistor as p-type channel using standard microelectronic technology. The SiNN-based transistors exhibit a high initial ON-state current (5.10 −8 A) and homogeneous electrical characteristics. For DNA detection, a new and eco-friendly functionalization process based on glycidyloxypropyltrimethoxysilane (GOPS) was performed which enables the covalent grafting of DNA probes on SiNN. This hybridization leads to a significant decrease of ON-state current of device. Additionally, it is observed that SiNN devices reveal reproductive current response to DNA detection. We demonstrate, for the first time, the successful integration of SiNN into sensor for electrical label-free DNA detection at low cost.

Detection of DNA of genetically modified maize by a silicon nanowire field-effect transistor

Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011

A silicon nanowire field-effect transistor based sensor (SiNW-FET) has been proved to be the most sensitive and powerful device for bio-detection applications. In this paper, SiNWs were first fabricated by using our recently developed deposition and etching under angle technique (DEA), then used to build up the complete SiNW device based biosensor. The fabricated SiNW biosensor was used to detect DNA of genetically modified maize. As the DNA of the genetically modified maize has particular DNA sequences of 35S promoter, we therefore designed 21 mer DNA oligonucleotides, which are used as a receptor to capture the transferred DNA of maize. In our work, the SiNW biosensor could detect DNA of genetically modified maize with concentrations down to about 200 pM.

Silicon nanowire interface circuit for DNA detection

2017

Detection and quantification of DNA is critical to many areas of life sciences and health care, from disease diagnosis to drug screening. The transduction of DNA through electrochemical methods have a fast response rate and with a conductometric device like the silicon nanowire which can be fabricated to have a similar diameter of the DNA molecule being targeted, detection is real-time. Critical to this is the interfacing of a current-source and an amplifier capable of achieving a maximum of 10 pico ampere input bias. In this project, we fabricated a silicon nanowire using the top down approach and built a circuit that can mimic the output signal as low as 12 nA and achieved a gain of 1 million to be interfaced with the nanowire for real-time DNA detection.

Fabrication of Silicon Nanowire Sensors for Highly Sensitive pH and DNA Hybridization Detection

Nanomaterials

A highly sensitive silicon nanowire (SiNW)-based sensor device was developed using electron beam lithography integrated with complementary metal oxide semiconductor (CMOS) technology. The top-down fabrication approach enables the rapid fabrication of device miniaturization with uniform and strictly controlled geometric and surface properties. This study demonstrates that SiNW devices are well-aligned with different widths and numbers for pH sensing. The device consists of a single nanowire with 60 nm width, exhibiting an ideal pH responsivity (18.26 × 106 Ω/pH), with a good linear relation between the electrical response and a pH level range of 4–10. The optimized SiNW device is employed to detect specific single-stranded deoxyribonucleic acid (ssDNA) molecules. To use the sensing area, the sensor surface was chemically modified using (3-aminopropyl) triethoxysilane and glutaraldehyde, yielding covalently linked nanowire ssDNA adducts. Detection of hybridized DNA works by detecting ...

Silicon Nanowire Arrays for Label-Free Detection of DNA

Analytical Chemistry, 2007

Arrays of highly ordered n-type silicon nanowires (SiNW) are fabricated using complementary metal-oxide semiconductor (CMOS) compatible technology, and their applications in biosensors are investigated. Peptide nucleic acid (PNA) capture probe-functionalized SiNW arrays show a concentration-dependent resistance change upon hybridization to complementary target DNA that is linear over a large dynamic range with a detection limit of 10 fM. As with other SiNW biosensing devices, the sensing mechanism can be understood in terms of the change in charge density at the SiNW surface after hybridization, the so-called "field effect". The SiNW array biosensor discriminates satisfactorily against mismatched target DNA. It is also able to monitor directly the DNA hybridization event in situ and in real time. The SiNW array biosensor described here is ultrasensitive, non-radioactive, and more importantly, label-free, and is of particular importance to the development of gene expression profiling tools and point-of-care applications.

The label free DNA sensor using a silicon nanowire array

Journal of biotechnology, 2012

Biosensors based on silicon nanowire (Si-NW) promise highly sensitive dynamic label free electrical detection of various biological molecules. Here we report Si-NW array electronic devices that function as sensitive and selective detectors of as synthesized 2D DNA lattices with biotins. The Si-NW array was fabricated using top-down approach consists of 250 nanowires of 20 m in length, equally spaced with an interval of 3.2 m. Measurements of photoresistivity of the Si-NW array device with streptavidin (SA) attached on biotinylated DNA lattices at different concentration were observed and analyzed.. The conductivity in the DNA lattices with protein SA shows significant change in the photoresistivity of Si-NW array device. This Si-NW based DNA sensor would be one of very efficient devices for direct, label free DNA detection and could provide a pathway to immunological assays, DNA forensics and toxin detection in modern biotechnology.

Novel poly-silicon nanowire field effect transistor for biosensing application

Biosensors and Bioelectronics, 2009

A simple and low-cost method to fabricate poly-silicon nanowire field effect transistor (poly-Si NW FET) for biosensing application was demonstrated. The poly-silicon nanowire (poly-Si NW) channel was fabricated by employing the poly-silicon (poly-Si) sidewall spacer technique, which approach was comparable with current commercial semiconductor process and forsaken expensive E-beam lithography tools. The electronic properties of the poly-Si NW FET in aqueous solution were found to be similar to those of single-crystal silicon nanowire field effect transistors reported in the literature. A model biotin and avidin/streptavidin sensing system was used to demonstrate the biosensing capacity of poly-Si NW FET. The changes of I D -V G curves were consistent with an n-type FET affected by a nearby negatively (streptavidin) and positively (avidin) charged molecules, respectively. Specific electric changes were observed for streptavidin and avidin sensing when nanowire surface of poly-Si NW FET was modified with biotin and streptavidin at sub pM to nM range could be distinguished. With its excellent electric properties and the potential for mass commercial production, poly-Si NW FET can be a very useful transducer for a variety of biosensing applications.

Computational aspects of the three-dimensional feature-scale simulation of silicon-nanowire field-effect sensors for DNA detection

Journal of Computational Electronics, 2007

In recent years DNA-sensors, and generally biosensors, with semiconducting transducers were fabricated and characterized. Although the concept of so-called BioFETs was proposed already two decades ago, its realization has become feasible only recently due to advances in process technology. In this paper a comprehensive and rigorous approach to the simulation of silicon-nanowire DNAFETs at the feature-scale is presented. It allows to investigate the feasibility of single-molecule detectors and is used to elucidate the performance that can be expected from sensors with nanowire diameters in the deca-nanometer range. Finally the computational challenges for the simulation of silicon-nanowire DNAsensors are discussed.

Lab-on-Chip Silicon nanowire biosensors, for biomedical applications

2012

Low-cost point-of-care medical diagnostic devices are of crucial importance for the future health care system. Lab-on-chip (LOC) systems with silicon nanowires (SiNW) in a Field-effect transistor (FET) setup can be used as biosensors. [1] Due to its high sensitivity and compatibility with a number of LOC technologies SiNWs can be used in a variety of setups, making it an excellent candidate for biosensor devices. In biosensing applications, SiNWs can be functionalized, e.g. with specific antibodies, to ensure selective sensitivity towards a certain target. [2] Detecting small amounts of antigens can for example allow for the diagnosis of diseases in their early stages. Single virus detection using SiNWs has been previously demonstrated [1] , opening the possibility of extremely sensitive diagnostic tools. However, in order to develop a reliable and reproducible diagnostic tool, it is of outmost importance to truly understand the effects that lead to the high sensitivity that can be ...