Carboxyl-terminal basic amino acids in the X domain are essential for the nuclear import of phospholipase C delta1 (original) (raw)

Abstract

Background : Although phospholipase C (PLC) δ δ δ δ 1 containing a functional nuclear export signal (NES) is normally localized at the plasma membrane and in the cytoplasm, it shuttles between the nucleus and the cytoplasm. Since nucleocytoplasmic shuttling of a molecule is generally regulated by a balance between its NES and the nuclear localization signal (NLS), we examined whether PLC δ δ δ δ 1 contains an NLS sequence.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (53)

  1. Cocco, L., Gilmour, R.S., Ognibene, A., Letcher, A.J., Manzoli, F.A. & Irvine, R.F. (1987) Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem. J. 248, 765 -770.
  2. Cocco, L., Martelli, A.M., Capitani, S., et al. (1995) Nuclear inositol lipid cycle and differentiation. Adv. Enzyme Regul. 35, 23 -33.
  3. Cocco, L., Martelli, A.M., Gilmour, R.S., Rhee, S.G. & Manzoli, F.A. (2001) Nuclear phospholipase C and signaling. Biochim. Biophys. Acta 1530, 1-14.
  4. D'Santos, C.S., Clarke, J.H. & Divecha, N. (1998) Phospholipid signalling in the nucleus. Een DAG uit het leven van de inositide signalering in de nucleus. Biochim. Biophys. Acta 1436, 201-232.
  5. D'Santos, C.S., Clarke, J.H., Irvine, R.F. & Divecha, N. (1999) Nuclei contain two differentially regulated pools of diacylgly- cerol. Curr. Biol. 9, 437-440.
  6. Davey, J., Dimmock, N.J. & Colman, A. (1985) Identification of the sequence responsible for the nuclear accumulation of the influenza virus nucleoprotein in Xenopus oocytes. Cell 40, 667-675.
  7. Dingwall, C. & Laskey, R.A. (1991) Nuclear targeting sequences -a consensus? Trends Biochem. Sci. 16, 478 -481.
  8. Dingwall, C., Robbins, J., Dilworth, S.M., Roberts, B. & Richardson, W.D. (1988) The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. J. Cell Biol. 107, 841-849.
  9. Divecha, N., Banfic, H. & Irvine, R.F. (1991) The polyphosph- oinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J. 10, 3207-3214.
  10. Divecha, N., Banfic, H. & Irvine, R.F. (1993) Inositides and the nucleus and inositides in the nucleus. Cell 74, 405 -407.
  11. Divecha, N., Clarke, J.H., Roefs, M., Halstead, J.R. & D'Santos, C. (2000) Nuclear inositides: inconsistent consistencies. Cell. Mol. Life Sci. 57, 379 -393.
  12. Divecha, N. & Irvine, R.F. (1995) Phospholipid signaling. Cell 80, 269 -278.
  13. Essen, L.O., Perisic, O., Cheung, R., Katan, M. & Williams, R.L. (1996) Crystal structure of a mammalian phosphoinositide- specific phospholipase Cδ. Nature 380, 595 -602.
  14. Faenza, I., Matteucci, A., Manzoli, L., et al. (2000) A role for nuclear phospholipase cβ 1 in cell cycle control. J. Biol. Chem. 275, 30520 -30524.
  15. Fischer, U., Huber, J., Boelens, W.C., Mattaj, I.W. & Luhrmann, R. (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82, 475 -483.
  16. Fujii, M., Ohtsubo, M., Ogawa, T., Kamata, H., Hirata, H. & Yagisawa, H. (1999) Real-time visualization of PH domain- dependent translocation of phospholipase C-δ1 in renal epithe- lial cells (MDCK): Response to hypo-osmotic stress. Biochem. Biophys. Res. Commun. 254, 284 -291.
  17. Fukuda, M., Asano, S., Nakamura, T., et al. (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308 -311.
  18. Fukuda, M., Gotoh, I., Gotoh, Y. & Nishida, E. (1996) Cytoplas- mic localization of mitogen-activated protein kinase kinase directed by its NH 2 -terminal, leucine-rich short amino acid sequence, which act as a nuclear export signal. J. Biol. Chem. 271, 20024 -20028.
  19. Garcia-Bustos, J., Heitman, J. & Hall, M.N. (1991) Nuclear pro- tein localization. Biochim. Biophys. Acta 1071, 83 -101.
  20. Gashler, A.L., Swaminathan, S. & Sukhatme, V.P. (1993) A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate- early transcription factor Egr-1. Mol. Cell. Biol. 13, 4556 - 4571.
  21. Ghosh, S., Pawelczyk, T. & Lowenstein, J.M. (1997) Phospholipase C isoforms δ1 and δ3 from human fibroblasts-High-yield expression in Escherichia coli, simple purification, and proper- ties. Protein Expr. Purif. 9, 262 -278.
  22. Hanakahi, L.A., Bartlet-Jones, M., Chappell, C., Pappin, D. & West, S.C. (2000) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102, 721-729.
  23. Homburg, S., Visochek, L., Moran, N., et al. (2000) A fast signal- induced activation of Poly (ADP-ribose) polymerase: a novel downstream target of phospholipase. C. J. Cell Biol. 150, 293 -307.
  24. Irvine, R.F. & Schell, M.J. (2001) Back in the water: the return of the inositol phosphates. Nature Rev. Mol. Cell. Biol. 2, 327- 338.
  25. Kalderon, D., Richardson, W.D., Markham, A.F. & Smith, A.E. (1984) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311, 33 -38.
  26. Kim, C.G., Park, D. & Rhee, S.G. (1996) The role of carboxyl- terminal basic amino acids in Gqα-dependent activation, particulate association, and nuclear localization of phospholi- pase C-β1. J. Biol. Chem. 271, 21187-21192.
  27. Kudo, N., Khochbin, S., Nishi, K., et al. (1997) Molecular cloning and cell cycle-dependent expression of mammalian CRM1, a protein involved in nuclear export of proteins. J. Biol. Chem. 272, 29742 -29751.
  28. Kudo, N., Matsumori, N., Taoka, H., et al. (1999) Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. USA 96, 9112 -9117.
  29. Kudo, N., Wolff, B., Sekimoto, T., et al. (1998) Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540 -547.
  30. Lanford, R.E., Kanda, P. & Kennedy, R.C. (1986) Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46, 575 -582.
  31. Lee, S.B. & Rhee, S.G. (1996) Molecular cloning, splice variants, expression, and purification of phospholipase C-δ4. J. Biol. Chem. 271, 25 -31.
  32. Lin, H., Choi, J.H., Hasek, J., DeLillo, N., Lou, W. & Vancura, A. (2000) Phospholipase C is involved in kinetochore function in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 3597-3607.
  33. Liu, N. & Fukami, K., Yu, H. & Takenawa, T. (1996) A new phos- pholipase C δ4 is induced at S-phase of the cell cycle and appears in the nucleus. J. Biol. Chem. 271, 355 -360.
  34. Marche, P., Herembert, T. & Zhu, D.L. (1995) Molecular mech- anisms of vascular hypertrophy in the spontaneously hyper- tensive rat. Clin. Exp. Pharmacol. Physiol. 22, S114 -S116.
  35. Marche, P., Herembert, T. & Zhu, D.L. (1997) Pharmacologic treatment of atherosclerosis: beyond lipid-lowering therapy. Int. J. Cardiol. 62, S17-S22.
  36. Murray, M.G. & Thompson, W.F. (1980) Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 8, 4321-4325.
  37. Nishi, K., Yoshida, M., Fujiwara, D., Nishikawa, M., Horinouchi, S. & Beppu, T. (1994) Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem. 269, 6320 -6324.
  38. Odom, A.R., Stahlberg, A., Wente, S.R. & York, J.D. (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcrip- tional control. Science 287, 2026 -2029.
  39. Robbins, J., Dilworth, S.M., Laskey, R.A. & Dingwall, C. (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615 -623.
  40. Saiardi, A., Caffrey, J.J., Snyder, S.H. & Shears, S.B. (2000) In- ositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett. 468, 28- 32 [ published erratum appears in FEBS Lett. (2000) 469, 213].
  41. Stehno-Bittel, L., Luckhoff, A. & Clapham, D.E. (1995) Calcium release from the nucleus by InsP3 receptor channels. Neuron 14, 163 -167.
  42. Sun, B., Murray, N.R. & Fields, A.P. (1997) A role for nuclear phosphatidylinositol-specific phospholipase C in the G2/M phase transition. J. Biol. Chem. 272, 26313 -26317.
  43. Wen, W., Meinkoth, J.L., Tsien, R.Y. & Taylor, S.S. (1995) Iden- tification of signal for rapid export of proteins from the nucleus. Cell 82, 463 -473.
  44. Williams, R.L. (1999) Mammalian phosphoinositide-specific phospholipase C. Biochim. Biophys. Acta 1441, 255 -267.
  45. Yagisawa, H., Tanasc, H. & Nojima, H. (1991) Phospholipase C-δ gene of the spontaneously hypertensive rat harbors point mutations causing amino acid substitutions in a catalytic domain. J. Hypertens. 9, 997-1004.
  46. Yagisawa, H., Hirata, M., Kanematsu, T., et al. (1994) Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ 1 . J. Biol. Chem. 269, 20179 -20188.
  47. Yagisawa, H., Sakuma, K., Paterson, H.F., et al. (1998) Replace- ments of single basic amino acids in the pleckstrin homology domain of phospholipase C-δ1 alter the ligand binding, phos- pholipase activity, and interaction with the plasma membrane. J. Biol. Chem. 273, 417-424.
  48. Yamaga, M., Fujii, M., Kamata, H., Hirata, H. & Yagisawa, H. (1999) Phospholipase C-δ1 contains a functional nuclear export signal sequence. J. Biol. Chem. 274, 28537-28541.
  49. Yamamoto, T., Takeuchi, H., Kanematsu, T., et al. (1999) Involve- ment of EF hand motifs in the Ca(2+)-dependent binding of the pleckstrin homology domain to phosphoinositides. Eur. J. Biochem. 265, 481-490.
  50. Yamasaki, M., Hashiguchi, N., Tsukamoto, T. & Osumi, T. (1998) Variant forms of green and blue fluorescent proteins adapted for the use in mammalian cells. Bioimages 6, 1-7.
  51. York, J.D., Odom, A.R., Murphy, R., Ives, E.B. & Wente, S.R. (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96 -100.
  52. Yu, H., Fukami, K., Watanabe, Y., Ozaki, S. & Takenawa, T. (1998) Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur. J. Biochem. 251, 281-287.
  53. Zhao, K., Wang, W., Rando, O.J., et al. (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625 -636.